• Title/Summary/Keyword: nonlinear functions

Search Result 1,043, Processing Time 0.021 seconds

Nonlocal geometrically nonlinear dynamic analysis of nanobeam using a meshless method

  • Ghadiri Rad, Mohammad Hossein;Shahabian, Farzad;Hosseini, Seyed Mahmoud
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.293-304
    • /
    • 2019
  • In the present paper, the element free Galerkin (EFG) method is developed for geometrically nonlinear analysis of deep beams considering small scale effect. To interpret the behavior of structure at the nano scale, the higher-order gradient elasticity nonlocal theory is taken into account. The radial point interpolation method with high order of continuity is used to construct the shape functions. The nonlinear equation of motion is derived using the principle of the minimization of total potential energy based on total Lagrangian approach. The Newmark method with the small time steps is used to solve the time dependent equations. At each time step, the iterative Newton-Raphson technique is applied to minimize the residential forces caused by the nonlinearity of the equations. The effects of nonlocal parameter and aspect ratio on stiffness and dynamic parameters are discussed by numerical examples. This paper furnishes a ground to develop the EFG method for large deformation analysis of structures considering small scale effects.

Geometrically nonlinear meshfree analysis of 3D-shell structures based on the double directors shell theory with finite rotations

  • Mellouli, Hana;Jrad, Hanen;Wali, Monther;Dammak, Fakhreddine
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.397-408
    • /
    • 2019
  • In this paper, a geometrically nonlinear meshfree analysis of 3D various forms of shell structures using the double director shell theory with finite rotations is proposed. This theory is introduced in the present method to remove the shear correction factor and to improve the accuracy of transverse shear stresses with the consideration of rotational degrees of freedom.The present meshfree method is based on the radial point interpolation method (RPIM) which is employed for the construction of shape functions for a set of nodes distributed in a problem domain. Discrete system of geometrically nonlinear equilibrium equations solved with the Newton-Raphson method is obtained by incorporating these interpolations into the weak form. The accuracy of the proposed method is examined by comparing the present results with the accurate ones available in the literature and good agreements are found.

Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations

  • Asgari, Gholamreza;Payganeh, Gholamhassan;Fard, Keramat Malekzadeh
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.525-540
    • /
    • 2019
  • The purpose of the present work was to study the dynamic instability of a three-layered, symmetric sandwich beam subjected to a periodic axial load resting on nonlinear elastic foundation. A higher-order theory was used for analysis of sandwich beams with soft core on elastic foundations. In the higher-order theory, the Reddy's third-order theory was used for the face sheets and quadratic and cubic functions were assumed for transverse and in-plane displacements of the core, respectively. The elastic foundation was modeled as nonlinear's type. The dynamic instability regions and free vibration were investigated for simply supported conditions by Bolotin's method. The results showed that the responses of the dynamic instability of the system were influenced by the excitation frequency, the coefficients of foundation, the core thickness, the dynamic and static load factor. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory.

SOLVABILITY AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR SOME NONLINEAR INTEGRAL EQUATIONS RELATED TO CHANDRASEKHAR'S INTEGRAL EQUATION ON THE REAL HALF LINE

  • Mahmoud Bousselsal;Daewook Kim;Jong Kyu Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.1
    • /
    • pp.57-79
    • /
    • 2023
  • We investigate the existence and uniform attractivity of solutions of a class of functional integral equations which contain a number of classical nonlinear integral equations as special cases. Using the technique of measures of noncompactness and a fixed point theorem of Darbo type we prove the existence of solutions of these equations in the Banach space of continuous and bounded functions on the nonnegative real half axis. Our results extend and improve some known results in the recent literature. An example illustrating the main result is presented in the last section.

AMN controller for dynamic control of robot manpulators (로봇 머니퓰레이터의 동력학 제어를 위한 AMN제어기)

  • 정재욱;국태용;이택종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1569-1572
    • /
    • 1997
  • In this paper, we present an associative memory network (AMN) controller for dynamic robot control. The purpose of using AMN is to reduce the size of required memory in storing and recalling large of daa representing input relationship of nonlinear functions. With the capability AMN can be used to dynamic robot control, which has nonlinear properties inherently. The proposed AMN control scheme has advantages for the inverse dynamics learning no limitatiion of inpur range, and insensitive of payload change. Computer simulations show the effectiveness and feasibility of proposed scheme.

  • PDF

NONLINEAR FRACTIONAL PROGRAMMING PROBLEM WITH INEXACT PARAMETER

  • Bhurjee, A.K.;Panda, G.
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.5_6
    • /
    • pp.853-867
    • /
    • 2013
  • In this paper a methodology is developed to solve a nonlinear fractional programming problem, whose objective function and constraints are interval valued functions. Interval valued convex fractional programming problem is studied. This model is transformed to a general convex programming problem and relation between the original problem and the transformed problem is established. These theoretical developments are illustrated through a numerical example.

A Nonparametric Method for Nonlinear Regression Parameters

  • Kim, Hae-Kyung
    • Journal of the Korean Statistical Society
    • /
    • v.18 no.1
    • /
    • pp.46-61
    • /
    • 1989
  • This paper is concerned with the development of a nonparametric procedure for the statistical inference about the nonlinear regression parameters. A confidence region and a hypothesis testing procedure based on a class of signed linear rank statistics are proposed and the asymptotic distributions of the test statistic both under the null hypothesis and under a sequence of local alternatives are investigated. Some desirable asymptotic properties including the asymptotic relative efficiency are discussed for various score functions.

  • PDF

An Interactive Fuzzy Approach for Multiobjective Nonlinear Programming Problems with Fuzzy Parameters (퍼지 모수를 가지는 다목적 비선형 계획 문제의 대화형 퍼지 접근)

  • 이상완;남현우;윤연근
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.67-78
    • /
    • 1997
  • In general, two types fuzziness of human judgements should be incorporated in multiobjective programming problems. One is the expert's ambigjous understanding of the nature of the parameters in the problem formulation process and the other is the fuzzy goals of the decision maker for each of the objective functions. In this paper, we present a new interactive fuzzy approach for obtaining the satisficing solution which efficiently reflect both types of fuzziness. An illustrative numerical example nonlinear programming problems with fuzzy parameters is demonstrated along with the corresponding computer outputs.

  • PDF

Positive solutions for predator-prey equations with nonlinear diffusion rates

  • Ahn, In-Kyung
    • Journal of the Korean Mathematical Society
    • /
    • v.31 no.4
    • /
    • pp.545-558
    • /
    • 1994
  • In this paper, we will investigate the existence of positive solutions to the predator-prey interacting system $$ {-\varphi(x, u)\Delta u = uf(x, u, \upsilon) in \Omega {-\psi(x, \upsilon)\Delta\upsilon = \upsilon g(x, u, \upsilon) {\frac{\partial n}{\partial u} + ku = 0 on \partial\Omega {\frac{\partial n}{\partial\upsilon} + \sigma\upsilon = 0. $$ in a bound region $\Omega$ in $R^n$ with smooth boundary, where $\varphi$ and $\psi$ are strictly positive functions, serving as nonlinear diffusion rates, and $k, \sigma > 0$ are constants.

  • PDF

STABILITY OF FRACTIONAL-ORDER NONLINEAR SYSTEMS DEPENDING ON A PARAMETER

  • Ben Makhlouf, Abdellatif;Hammami, Mohamed Ali;Sioud, Khaled
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1309-1321
    • /
    • 2017
  • In this paper, we present a practical Mittag Leffler stability for fractional-order nonlinear systems depending on a parameter. A sufficient condition on practical Mittag Leffler stability is given by using a Lyapunov function. In addition, we study the problem of stability and stabilization for some classes of fractional-order systems.