• 제목/요약/키워드: nonlinear fractional differential equations

검색결과 49건 처리시간 0.024초

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won;Chung, Sang-Kwon;Lee, Yoon-Ju
    • 대한수학회보
    • /
    • 제47권6호
    • /
    • pp.1225-1234
    • /
    • 2010
  • Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

EXISTENCE OF POSITIVE SOLUTIONS FOR EIGENVALUE PROBLEMS OF SINGULAR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Lee, Yong-Hoon;Lee, Jinsil
    • East Asian mathematical journal
    • /
    • 제33권3호
    • /
    • pp.323-331
    • /
    • 2017
  • In this paper, we consider the existence of positive solutions for eigenvalue problems of nonlinear fractional differential equations with singular weights. We give various conditions on f and apply Krasnoselskii's Cone Fixed Point Theorem. As a result, we obtain several existence and nonexistence results corresponding to ${\lambda}$ in certain intervals.

ANALYTIC TRAVELLING WAVE SOLUTIONS OF NONLINEAR COUPLED EQUATIONS OF FRACTIONAL ORDER

  • AN, JEONG HYANG;LEE, YOUHO
    • 호남수학학술지
    • /
    • 제37권4호
    • /
    • pp.411-421
    • /
    • 2015
  • This paper investigates the issue of analytic travelling wave solutions for some important coupled models of fractional order. Analytic travelling wave solutions of the considered model are found by means of the Q-function method. The results give us that the Q-function method is very simple, reliable and effective for searching analytic exact solutions of complex nonlinear partial differential equations.

CAPUTO DELAYED FRACTIONAL DIFFERENTIAL EQUATIONS BY SADIK TRANSFORM

  • Awad T. Alabdala;Basim N. Abood;Saleh S. Redhwan;Soliman Alkhatib
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.439-448
    • /
    • 2023
  • In this article, we are interested in studying the fractional Sadik Transform and a combination of the method of steps that will be applied together to find accurate solutions or approximations to homogeneous and non-homogeneous delayed fractional differential equations with constant-coefficient and possible extension to time-dependent delays. The results show that the process is correct, exact, and easy to do for solving delayed fractional differential equations near the origin. Finally, we provide several examples to illustrate the applicability of this method.

ON IMPULSIVE SYMMETRIC Ψ-CAPUTO FRACTIONAL VOLTERRA-FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권3호
    • /
    • pp.851-863
    • /
    • 2023
  • We study the appropriate conditions for the findings of uniqueness and existence for a group of boundary value problems for impulsive Ψ-Caputo fractional nonlinear Volterra-Fredholm integro-differential equations (V-FIDEs) with symmetric boundary non-instantaneous conditions in this paper. The findings are based on the fixed point theorem of Krasnoselskii and the Banach contraction principle. Finally, the application is provided to validate our primary findings.

EXISTENCE AND STABILITY RESULTS FOR STOCHASTIC FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS WITH GAUSSIAN NOISE AND LÉVY NOISE

  • P. Umamaheswari;K. Balachandran;N. Annapoorani;Daewook Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권2호
    • /
    • pp.365-382
    • /
    • 2023
  • In this paper we prove the existence and uniqueness of solution of stochastic fractional neutral differential equations with Gaussian noise or Lévy noise by using the Picard-Lindelöf successive approximation scheme. Further stability results of nonlinear stochastic fractional dynamical system with Gaussian and Lévy noises are established. Examples are provided to illustrate the theoretical results.

Existence of Solutions of Integral and Fractional Differential Equations Using α-type Rational F-contractions in Metric-like Spaces

  • Nashine, Hemant Kumar;Kadelburg, Zoran;Agarwal, Ravi P.
    • Kyungpook Mathematical Journal
    • /
    • 제58권4호
    • /
    • pp.651-675
    • /
    • 2018
  • We present ${\alpha}$-type rational F-contractions in metric-like spaces, and respective fixed and common fixed point results for weakly ${\alpha}$-admissible mappings. Useful examples illustrate the effectiveness of the presented results. As applications, we obtain sufficient conditions for the existence of solutions of a certain type of integral equations followed by examples of nonlinear fractional differential equations that are verified numerically.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.221-228
    • /
    • 2013
  • The method of upper and lower solutions and the generalized quasilinearization technique is developed for the existence and approximation of solutions to boundary value problems for higher order fractional differential equations of the type $^c\mathcal{D}^qu(t)+f(t,u(t))=0$, $t{\in}(0,1),q{\in}(n-1,n],n{\geq}2$ $u^{\prime}(0)=0,u^{\prime\prime}(0)=0,{\ldots},u^{n-1}(0)=0,u(1)={\xi}u({\eta})$, where ${\xi},{\eta}{\in}(0,1)$, the nonlinear function f is assumed to be continuous and $^c\mathcal{D}^q$ is the fractional derivative in the sense of Caputo. Existence of solution is established via the upper and lower solutions method and approximation of solutions uses the generalized quasilinearization technique.

HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.329-338
    • /
    • 2014
  • In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type $$^c{\mathcal{D}}^q_{0+}u(t)+f(t,u(t))=0,\;t{\in}(0,1)$$ $$u^{\prime}(0)={\gamma}u^{\prime}({\eta}),\;u^{\prime\prime}(0)=0,\;u^{\prime\prime\prime}(0)=0,{\ldots},u^{(n-1)}(0)=0,\;u(1)={\delta}u({\eta})$$, where, n-1 < q < n, $n({\geq}3){\in}\mathbb{N}$, 0 < ${\eta},{\gamma},{\delta}$ < 1 and $^c\mathcal{D}^q_{0+}$ is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.

SOLVABILITY OF SOME NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER VIA MEASURE OF NONCOMPACTNESS

  • Dadsetadi, Somayyeh;Nouri, Kazem;Torkzadeh, Leila
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제27권1호
    • /
    • pp.13-24
    • /
    • 2020
  • In this article, we investigate the solvability of nonlinear fractional integro-differential equations of the Hammerstein type. The results are obtained using the technique of measure of noncompactness and the Darbo theorem in the real Banach space of continuous and bounded functions in the interval [0, a]. At the end, an example is presented to illustrate the effectiveness of the obtained results.