• 제목/요약/키워드: nonlinear differential equation

검색결과 447건 처리시간 0.028초

Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method

  • Benaoum, Abdelhak;Youzera, Hadj;Abualnour, Moussa;Houari, Mohammed Sid Ahmed;Meftah, Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제80권6호
    • /
    • pp.727-736
    • /
    • 2021
  • In this work, mathematical modeling of the passive vibration controls of a three-layered sandwich beam under hard excitation is developed. Kelvin-Voigt Viscoelastic model is considered in the core. The formulation is based on the higher-order zig-zag theories where the normal and shear deformations are taken into account only in the viscoelastic core. The dynamic behaviour of the beam is represented by a complex highly nonlinear ordinary differential equation. The method of multiple scales is adopted to solve the analytical frequency-amplitude relationships in the super-harmonic resonance case. Parametric studies are carried out by using HSDT and first-order deformation theory by considering different geometric and material parameters.

Characteristic equation solution of nonuniform soil deposit: An energy-based mode perturbation method

  • Pan, Danguang;Lu, Wenyan;Chen, Qingjun;Lu, Pan
    • Geomechanics and Engineering
    • /
    • 제19권5호
    • /
    • pp.463-472
    • /
    • 2019
  • The mode perturbation method (MPM) is suitable and efficient for solving the eigenvalue problem of a nonuniform soil deposit whose property varies with depth. However, results of the MPM do not always converge to the exact solution, when the variation of soil deposit property is discontinuous. This discontinuity is typical because soil is usually made up of sedimentary layers of different geologic materials. Based on the energy integral of the variational principle, a new mode perturbation method, the energy-based mode perturbation method (EMPM), is proposed to address the convergence of the perturbation solution on the natural frequencies and the corresponding mode shapes and is able to find solution whether the soil properties are continuous or not. First, the variational principle is used to transform the variable coefficient differential equation into an equivalent energy integral equation. Then, the natural mode shapes of the uniform shear beam with same height and boundary conditions are used as Ritz function. The EMPM transforms the energy integral equation into a set of nonlinear algebraic equations which significantly simplifies the eigenvalue solution of the soil layer with variable properties. Finally, the accuracy and convergence of this new method are illustrated with two case study examples. Numerical results show that the EMPM is more accurate and convergent than the MPM. As for the mode shapes of the uniform shear beam included in the EMPM, the additional 8 modes of vibration are sufficient in engineering applications.

Heat transfer on annular fins with one-dimensional radiative and convective heat exchange (원형휜에서 열전달 특성분석)

  • 이금배
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • 제14권6호
    • /
    • pp.1621-1628
    • /
    • 1990
  • Numerical solutions are presented for the heat transfer from radiating and convecting fins. Consideration is given to thin, annular fins attached to a tube surface for which the temperature is constant. Fin to fin, fin to base, and fin to environment radiative interactions are considered. It is assumed that the radiating surface is diffuse-gray, the environment is black, and the surrounding fluid is transparent. The radiation terms are formulated by using Poljak's net-radiation methoad. The mathematical description of the simultaneously heat transport by conduction, convection, and radiation leads to a nonlinear integro-differential equation. This has been solved for a wide range of the pertinent physical parameters by using finite difference method and iteration method based on the Newton-Raphson technique. The temperature distributions, heat transfer rates, fin efficiencies, and fin effectivenesses are presented in dimensionless form. The results definitely indicate that the use of fins leads to a significant increase in heat transfer compared with the unfinned tube.

Nonlocal elasticity approach for free longitudinal vibration of circular truncated nanocones and method of determining the range of nonlocal small scale

  • Li, C.;Sui, S.H.;Chen, L.;Yao, L.Q.
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.279-286
    • /
    • 2018
  • The free longitudinal vibration of a circular truncated nanocone is investigated based on the nonlocal elasticity theory. Exact analytical formulations for tapered nanostructures are derived and the nonlinear differential governing equation of motion is developed. The nonlocal small scale effect unavailable in classical continuum theory is addressed to reveal the long-range interaction of atoms implicated in nonlocal constitutive relation. Unlike most previous studies applying the truncation method to the infinite higher-order differential equation, this paper aims to consider all higher-order terms to show the overall nonlocality. The explicit solution of nonlocal stress for longitudinal deformation is determined and it is an infinite series incorporating the classical stress derived in classical mechanics of materials and the infinite higher-order derivative of longitudinal displacement. Subsequently, the first three modes natural frequencies are calculated numerically and the significant effects of nonlocal small scale and vertex angle on natural frequencies are examined. The coupling phenomenon of natural frequency is observed and it is induced by the combined effects of nonlocal small scale and vertex angle. The critical value of nonlocal small scale is defined, and after that a new proposal for determining the range of nonlocal small scale is put forward since the principle of choosing the nonlocal small scale is still unclear at present. Additionally, two different types of nonlocal effects, namely the nonlocal stiffness weakening and strengthening, reversed phenomena existing in nanostructures are observed and verified. Hence the opposite nonlocal effects are resolved again clearly. The nano-engineers dealing with a circular truncated nanocone-based sensors and oscillators may benefit from the present work.

Geomatrically Non-linear Analysis Method by Curvature Based Flexibility Matrix (유연도 매트릭스를 사용한 기하학적 비선형 해석방법)

  • Kim, Jin Sup;Kwon, Min Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • 제15권2호
    • /
    • pp.125-135
    • /
    • 2011
  • The latest study for formulation of finite element method and computation techniques has progressed widely. The classical method in the formulation of frame elements for geometrically nonlinear analysis derives the geometric stiffness directly from the governing differential equation for bending with axial force. From the computational viewpoint of this paper, the most common approach is the finite element method. Commonly, the formulation of frame elements for geometrically nonlinear structures is based on appropriate interpolation functions for the transverse and axial displacements of the member. The formulation of flexibility-based elements, on the other hand, is based on interpolation functions for the internal forces. In this paper, a new method is used to suppose that interpolation functions for the displacements from the curvatures is Lagrangian interpolation. This paper derives flexibility matrix from that displacement functions and is considered the application of it. Using the flexibility matrix, this paper apply the program considered geometrically nonlinear analysis to common problems.

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권8호
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.

Non-linear vibration and stability analysis of an axially moving rotor in sub-critical transporting speed range

  • Ghayesh, Mergen H.;Ghazavi, Mohammad R.;Khadem, Siamak E.
    • Structural Engineering and Mechanics
    • /
    • 제34권4호
    • /
    • pp.507-523
    • /
    • 2010
  • Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to involve a mean value along with small harmonic fluctuations. Hamilton's principle is employed for this gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is neglected under the quasi-static stretch assumption and two integro-partial-differential equations are obtained. With introducing a complex variable, the equations of motion is presented in the form of a single, complex equation. The method of multiple scales is applied directly to the resulting equation and the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are formulated and the frequency-response curves are drawn. A number of case studies are considered and the numerical simulations are presented to highlight the effects of system parameters on the linear and nonlinear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system.

The Effective Young's Modulus of Model Ice Sheet in Ice Basin (빙해수조 모형빙판의 유효탄성계수 산출)

  • Lee, Jae-Hwan;Choi, Bong-Kyun;Kim, Tae-Wan;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제52권4호
    • /
    • pp.315-322
    • /
    • 2015
  • In this paper, the theory of rectangular plate on the elastic foundation is used to get the relation equation between the effective Young’s modulus and the ice sheet deflection by applying the characteristic length concept, since the model ice sheet is rectangular shape in KRISO (Korea Research Institute for Ships and Ocean Engineering) ice basin. The obtained relation equation is equal to that of using the circular plate theory. A device is made and used to measure the deflection of ice plate using LVDT (Linear Variable Differential Transformer) for several loading cases and the procedure of experiments measuring the deflection used for getting the Young’s modulus is explained. In addition, the flexural strength value obtained through flexural strength experiments is compared with that of finite element analysis using the obtained effective Young’s modulus. Also, a nonlinear FEA (Finite Element Analysis) of cantilever ice beam is done with eroding effect and LS-DYNA result shows the fracture of brittle ice under 1 mm/s velocity load.

A Fast Scheme for Inverting Single-Hole Electromagnetic Data

  • Kim Hee Joon;Lee Jung-Mo;Lee Ki Ha
    • Proceedings of the KSEEG Conference
    • /
    • 대한자원환경지질학회 2002년도 춘계 공동학술발표회
    • /
    • pp.167-169
    • /
    • 2002
  • The extended Born, or localized nonlinear approximation of integral equation (IE) solution has been applied to inverting single-hole electromagnetic (EM) data using a cylindrically symmetric model. The extended Born approximation is less accurate than a full solution but much superior to the simple Born approximation. When applied to the cylindrically symmetric model with a vertical magnetic dipole source, however, the accuracy of the extended Born approximation is greatly improved because the electric field is scalar and continuous everywhere. One of the most important steps in the inversion is the selection of a proper regularization parameter for stability. Occam's inversion (Constable et al., 1987) is an excellent method for obtaining a stable inverse solution. It is extremely slow when combined with a differential equation method because many forward simulations are needed but suitable for the extended Born solution because the Green's functions, the most time consuming part in IE methods, are repeatedly re-usable throughout the inversion. In addition, the If formulation also readily contains a sensitivity matrix, which can be revised at each iteration at little expense. The inversion algorithm developed in this study is quite stable and fast even if the optimum regularization parameter Is sought at each iteration step. Tn this paper we show inversion results using synthetic data obtained from a finite-element method and field data as well.

  • PDF

Battery State Estimation Algorithm for High-Capacity Lithium Secondary Battery for EVs Considering Temperature Change Characteristics

  • Park, Jinho;Lee, Byoungkuk;Jung, Do-Yang;Kim, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1927-1934
    • /
    • 2018
  • In this paper, we studied the state of charge (SOC) estimation algorithm of a high-capacity lithium secondary battery for electric vehicles (EVs) considering temperature characteristics. Nonlinear characteristics of high-capacity lithium secondary batteries are represented by differential equations in the mathematical form and expressed by the state space equation through battery modeling to extract the characteristic parameters of the lithium secondary battery. Charging and discharging equipment were used to perform characteristic tests for the extraction of parameters of lithium secondary batteries at various temperatures. An extended Kalman filter (EKF) algorithm, a state observer, was used to estimate the state of the battery. The battery capacity and internal resistance of the high-capacity lithium secondary battery were investigated through battery modeling. The proposed modeling was applied to the battery pack for EVs to estimate the state of the battery. We confirmed the feasibility of the proposed study by comparing the estimated SOC values and the SOC values from the experiment. The proposed method using the EKF is expected to be highly applicable in estimating the state of the high-capacity rechargeable lithium battery pack for electric vehicles.