• Title/Summary/Keyword: nonlinear differential equation

Search Result 446, Processing Time 0.029 seconds

A FINITE ELEMENT SOLUTION FOR THE CONSERVATION FORM OF BBM-BURGERS' EQUATION

  • Ning, Yang;Sun, Mingzhe;Piao, Guangri
    • East Asian mathematical journal
    • /
    • v.33 no.5
    • /
    • pp.495-509
    • /
    • 2017
  • With the accuracy of the nonlinearity guaranteed, plenty of time and large memory space are needed when we solve the finite element numerical solution of nonlinear partial differential equations. In this paper, we use the Group Element Method (GEM) to deal with the non-linearity of the BBM-Burgers Equation with Conservation form and perform a numerical analysis for two particular initial-boundary value (the Dirichlet boundary conditions and Neumann-Dirichlet boundary conditions) problems with the Finite Element Method (FEM). Some numerical experiments are performed to analyze the error between the exact solution and the FEM solution in MATLAB.

EXISTENCE AND UNIQUENESS THEOREMS OF SECOND-ORDER EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Bougoffa, Lazhar;Khanfer, Ammar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.899-911
    • /
    • 2018
  • In this paper, we consider the second-order nonlinear differential equation with the nonlocal boundary conditions. We first reformulate this boundary value problem as a fixed point problem for a Fredholm integral equation operator, and then present a result on the existence and uniqueness of the solution by using the contraction mapping theorem. Furthermore, we establish a sufficient condition on the functions ${\mu}$ and $h_i$, i = 1, 2 that guarantee a unique solution for this nonlocal problem in a Hilbert space. Also, accurate analytic solutions in series forms for this boundary value problems are obtained by the Adomian decomposition method (ADM).

COLLOCATION METHOD USING QUARTIC B-SPLINE FOR NUMERICAL SOLUTION OF THE MODIFIED EQUAL WIDTH WAVE EQUATION

  • Islam, Siraj-Ul;Haq, Fazal-I;Tirmizi, Ikram A.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.611-624
    • /
    • 2010
  • A Numerical scheme based on collocation method using quartic B-spline functions is designed for the numerical solution of one-dimensional modified equal width wave (MEW) wave equation. Using Von-Neumann approach the scheme is shown to be unconditionally stable. Performance of the method is validated through test problems including single wave, interaction of two waves and use of Maxwellian initial condition. Using error norms $L_2$ and $L_{\infty}$ and conservative properties of mass, momentum and energy, accuracy and efficiency of the suggested method is established through comparison with the existing numerical techniques.

NUMERICAL SOLUTION OF THE NONLINEAR KORTEWEG-DE VRIES EQUATION BY USING CHEBYSHEV WAVELET COLLOCATION METHOD

  • BAKIR, Yasemin
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.373-383
    • /
    • 2021
  • In this study, a numerical method deals with the Chebyshev wavelet collocation and Adomian decomposition methods are proposed for solving Korteweg-de Vries equation. Integration of the Chebyshev wavelets operational matrices is derived. This problem is reduced to a system of non-linear algebraic equations by using their operational matrix. Thus, it becomes easier to solve KdV problem. The error estimation for the Chebyshev wavelet collocation method and ADM is investigated. The proposed method's validity and accuracy are demonstrated by numerical results. When the exact and approximate solutions are compared, for non-linear or linear partial differential equations, the Chebyshev wavelet collocation method is shown to be acceptable, efficient and accurate.

The design of attitude reference system for underwater vehicle using extended kalman filter (확장칼만필터를 이용한 수중 운동체의 자세계산 시스템 설계)

  • 홍현수;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1352-1355
    • /
    • 1997
  • This paper presents the algorithm for estimating the attitude of an underwater vehicle using EFK. The system model is designed by linerizing the nonlinear Euler angle differential equation and the measurements is a speed logger output. The simulation result shows that the estimation lagorithm is adequate for decreasing attitude errors that grow abruptly during the motion with acceleration and rotation. It also shows that we can adapt the algorithm for compensating initial attitude errors generated after initial leveling.

  • PDF

EXTENDED JACOBIN ELLIPTIC FUNCTION METHOD AND ITS APPLICATIONS

  • Chen, Huaitang;Zhang, Hongqing
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.119-130
    • /
    • 2002
  • An extended Jacobin elliptic function method is presented for constructing exact travelling wave solutions of nonlinear partial differential equations(PDEs) in a unified way. The main idea of this method is to take full advantage of the elliptic equation that Jacobin elliptic functions satisfy and use its solutions to replace Jacobin elliptic functions in Jacobin elliptic function method. It is interesting that many other methods are special cases of our method. Some illustrative equations are investigated by this means.

NEW ANALYTIC APPROXIMATE SOLUTIONS TO THE GENERALIZED REGULARIZED LONG WAVE EQUATIONS

  • Bildik, Necdet;Deniz, Sinan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.749-762
    • /
    • 2018
  • In this paper, the new optimal perturbation iteration method has been applied to solve the generalized regularized long wave equation. Comparing the new analytic approximate solutions with the known exact solutions reveals that the proposed technique is extremely accurate and effective in solving nonlinear wave equations. We also show that,unlike many other methods in literature, this method converges rapidly to exact solutions at lower order of approximations.

EXISTENCE OF NONNEGATIVE SOLUTIONS FOR BOUNDARY VALUE PROBLEMS

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.495-505
    • /
    • 2009
  • By means of Green function and fixed point theorem related with cone theoretic method we show that there exist multiple nonnegative solutions of a Dirichlet problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\lambda}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x(0)=0=x(T)}$$, and a mixed problem $$\array{-[p(t)x^{\prime}(t)]^{\prime}={\mu}q(t)f(x(t)),\;t{\in}I=[0,\;T]\\x^{\prime}(0)=0=x(T)}$$, where ${\lambda}$ and ${\mu}$ are positive parameters.

  • PDF

EXISTENCE OF SOLUTIONS FOR P-LAPLACIAN TYPE EQUATIONS

  • Kim, Jong-Sik;Ku, Hye-Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.291-307
    • /
    • 1996
  • In this paper, we shall show the existence of solutions of the following nonlinear partial differential equation $$ {^{divA(-\Delta u) = f(x, u, \Delta u) in \Omega}^{u = 0 on \partial\Omega} $$ where $f(x, u, \Delta u) = -u$\mid$\Delta u$\mid$^{p-2} + h, p \geq 2, h \in L^\infty$.

  • PDF

CONTROLLABILITY FOR TRAJECTORIES OF SEMILINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Jeong, Jin-Mun;Kang, Yong Han
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.63-79
    • /
    • 2018
  • In this paper, we first consider the existence and regularity of solutions of the semilinear control system under natural assumptions such as the local Lipschtiz continuity of nonlinear term. Thereafter, we will also establish the approximate controllability for the equation when the corresponding linear system is approximately controllable.