• 제목/요약/키워드: nonlinear differential equation

검색결과 446건 처리시간 0.027초

가관측적인 랜덤 학수를 가진 스토캐스틱 시스템의 최적제어 (Optimal Control of Stochastic Systems with Completely Observable Random Coefficients)

  • 이만형;황창선
    • 대한전기학회논문지
    • /
    • 제34권5호
    • /
    • pp.173-178
    • /
    • 1985
  • The control of a linear system with random coefficients is discussed here. The cost function is of a quadratic form and the random coefficients are assumed to be completely observable by the controller. Stochastic Process involved in the problem by the controller. Stochastic Process involved in the problem formulation is presented to be the unique strong solution to the corresponding stochastic differential equations. Condition for the optimal control is represented through the existence of solution to a Cauchy problem for the given nonlinear partial differential equation. The optimal control is shown to be a linear function of the states and a nonlinear function of random parameters.

  • PDF

ON THE EXISTENCE AND BEHAVIOR OF SOLUTIONS FOR PERTURBED NONLINEAR DIFFERENTIAL EQUATIONS

  • Jin Gyo Jeong;Ki Yeon Shin
    • 대한수학회논문집
    • /
    • 제12권3호
    • /
    • pp.655-664
    • /
    • 1997
  • The existence and behavior of a bounded solution for a perturbed nonlinear differential equation of the type $$ (DE) x'(t) + Ax(t) \ni G(x(t)), t \in [0, \infty) $$ is considered. First, we consider the existence of a bounded solution with more simple assumptions using the concept of "the method of lines". Then we devote to study its behavior using recent results of almost non-expansive curve which is developed by Djafari Rouhani.i Rouhani.

  • PDF

NONLINEAR DIFFERENTIAL EQUATIONS OF SECOND ORDER IN A HILBERT SPACE

  • Kim, RakJoong
    • Korean Journal of Mathematics
    • /
    • 제16권1호
    • /
    • pp.91-101
    • /
    • 2008
  • Let H be a Hilbert space. Assume that $0{\leq}{\alpha}$, ${\beta}{\leq}1$ and r(t) > 0 in I = [0, T]. By means of the fixed point theorem of Leray-Schauder type the existence principles of solutions for two point boundary value problems of the form $\array{(r(t)x^{\prime}(t))^{\prime}+f(t,x(t),r(t)x^{\prime}(t))=0,\;t{\in}I\\x(0)=x(T)=0}$ are established where f satisfies for positive constants a, b and c ${\mid}{f(t,x,y){\mid}{\leq}a{\mid}x{\mid}^{\alpha}+b{\mid}y{\mid}^{\beta}+c\;\;for\;all(t,x,y){\in}I{\times}H{\times}H$.

  • PDF

수중운동체의 심도제어를 위한 제어기 설계 (Controller design for depth control of vehicle under seawater)

  • 이만형;박경철;곽한우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.516-521
    • /
    • 1993
  • In order to hold a underwater vehicle at a depth, we can modulate buoyancy that acts on the underwater vehicle. In this research, by using a ballon, we was able to generate buoyancy that could control depth in which vehicle was operate. And in order to control flux of air that was flowed in balloon, we used solenoid valve, relief valve and so on. We derived differential equations of volume of balloon, pressure of inside of balloon, dynamic of underwater vehicle, and air flux for the simulation and linearized these differential equation. So we designed LQG/LTR controller, and applied the controller to nonlinear system. Through the simulation, we compares the nonlinear system with the linear system and investigated the operation of solenoid valve.

  • PDF

불규칙 지반 가진력을 받는 탄성진자계의 비선형진동응답 (Nonlinear Vibration Responses of a Spring-Pendulum System under Random Base Excitation)

  • 조덕상
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.175-181
    • /
    • 2001
  • An investigation into the response statistics of a spring-pendulum system whose base oscillates randomly along vertical and horizontal line is made. The spring-pendulum system with internal resonance examined is known to be a good model for a variety of engineering systems, including ship motions with nonlinear coupling between pitching and rolling motions. The Fokker-Planck equation is used to generate a general first-order differential equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. In view of equilibrium solutions of this system and their stability, the response statistics is examined. It is seen that increase in horizontal excitation level leads to a decreased width of the internal resonance region.

  • PDF

협대역 불규칙가진력을 받는 탄성진자계의 확률적 응답특성 (Stochastic Responses of a Spring-Pendulum System under Narrow Band Random Excitation)

  • 조덕상
    • 한국산업융합학회 논문집
    • /
    • 제4권2호
    • /
    • pp.133-139
    • /
    • 2001
  • The nonlinear response statistics of an spring-pendulum system with internal resonance under narrow band random excitation is investigated analytically- The center frequency of the filtered excitation is selected to be close to natural frequency of directly excited spring mode. The Fokker-Planck equations is used to generate a general first-order differential equation in the dynamic moment of response coordinates. By means of the Gaussian closure method the dynamic moment equations for the random responses of the system are reduced to a system of autonomous ordinary differential equations. The nonlinear phenomena, such as jump and multiple solutions, under narrow band random excitation were found by Gaussian closure method.

  • PDF

Exact solutions of vibration and postbuckling response of curved beam rested on nonlinear viscoelastic foundations

  • Nazira Mohamed;Salwa A. Mohamed;Mohamed A. Eltaher
    • Advances in aircraft and spacecraft science
    • /
    • 제11권1호
    • /
    • pp.55-81
    • /
    • 2024
  • This paper presents the exact solutions and closed forms for of nonlinear stability and vibration behaviors of straight and curved beams with nonlinear viscoelastic boundary conditions, for the first time. The mathematical formulations of the beam are expressed based on Euler-Bernoulli beam theory with the von Karman nonlinearity to include the mid-plane stretching. The classical boundary conditions are replaced by nonlinear viscoelastic boundary conditions on both sides, that are presented by three elements (i.e., linear spring, nonlinear spring, and nonlinear damper). The nonlinear integro-differential equation of buckling problem subjected to nonlinear nonhomogeneous boundary conditions is derived and exactly solved to compute nonlinear static response and critical buckling load. The vibration problem is converted to nonlinear eigenvalue problem and solved analytically to calculate the natural frequencies and to predict the corresponding mode shapes. Parametric studies are carried out to depict the effects of nonlinear boundary conditions and amplitude of initial curvature on nonlinear static response and vibration behaviors of curved beam. Numerical results show that the nonlinear boundary conditions have significant effects on the critical buckling load, nonlinear buckling response and natural frequencies of the curved beam. The proposed model can be exploited in analysis of macrosystem (airfoil, flappers and wings) and microsystem (MEMS, nanosensor and nanoactuators).

비선형 경계조건을 가진 봉의 공진응답을 위한 다중시간해의 타당성 (Validity of the Multiple Scale Solution for a Resonance Response of a Bar with a Nonlinear Boundary Condition)

  • 이원경;여명환;배상수
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.55-60
    • /
    • 1997
  • In order to examine the validity of an asymptotic solution obtained from the method of multiple scales, we investigate a third-order subharmonic resonance response of a bar constrained by a nonlinear spring to a harmonic excitation. The motion of the bar is governed by a linear partial differential equation with a nonlinear boundary condition. The nonlinear boundary value problem is solved by using the finite difference method. The numerical solution is compared with the asymptotic solution.

  • PDF

블럭펄스함수를 이용한 비선형확률시스템의 칼만필터 설계 (Design of Kalman Filter of Nonlinear Stochastic System via BPF)

  • 안두수;임윤식;송인명;이명규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1089-1091
    • /
    • 1996
  • This paper presents a design method of Kalman Filter on continuous nonlinear stochastic system via BPF(Block Pulse Function). When we design Kalman Filter on nonlinear stochastic system, we must linearize this systems. In this paper, we uses the adaptive approach scheme and BPF for linearizing of nonlinear system and solving the Riccati differential equation which is usually guite difficult. This method proposed in this paper is simple and have computational advantages. Furthermore this method is very applicable to analysis and design of Kalman Filter on nonlinear stochastic systems.

  • PDF

Nonlinear dynamics of SWNT reinforced Aluminium alloy beam

  • Abdellatif Selmi;Samy Antit
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.407-416
    • /
    • 2024
  • The main objective of the present paper is to investigate the nonlinear vibration of buckled beams fixed at both ends and made of Aluminium allay (Al-alloy) reinforced with randomly dispersed Single Walled Carbon Nanotube (SWNT). The Mori-Tanak (M-T) micromechanical approach is selected to predict the homogenized material properties of the beams. The differential equation of motion governing the nonlinear behavior of the Euler-Bernoulli homogeneous beam is solved using an analytical method. The influences of diverse parameters including axial load, vibration amplitude, SWNT volume fraction, SWNT aspect ratio and beam slenderness ratio on the nonlinear frequency are studied.