• Title/Summary/Keyword: nonlinear difference systems

Search Result 123, Processing Time 0.092 seconds

EXISTENCE OF PERIODIC SOLUTIONS WITH PRESCRIBED MINIMAL PERIOD FOR A FOURTH ORDER NONLINEAR DIFFERENCE SYSTEM

  • LIU, XIA;ZHOU, TAO;SHI, HAIPING
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.491-504
    • /
    • 2018
  • In this article, we consider a fourth order nonlinear difference system. By making use of the critical point theory, we obtain some new existence theorems of at least one periodic solution with minimal period. Our main approach used in this article is the variational technique and the Saddle Point Theorem.

Effect of nonlinearity of fastening system on railway slab track dynamic response

  • Sadeghi, Javad;Seyedkazemi, Mohammad;Khajehdezfuly, Amin
    • Structural Engineering and Mechanics
    • /
    • 제83권6호
    • /
    • pp.709-727
    • /
    • 2022
  • Fastening systems have a significant role in the response of railway slab track systems. Although experimental tests indicate nonlinear behavior of fastening systems, they have been simulated as a linear spring-dashpot element in the available literature. In this paper, the influence of the nonlinear behavior of fastening systems on the slab track response was investigated. In this regard, a nonlinear model of vehicle/slab track interaction, including two commonly used fastening systems (i.e., RFFS and RWFS), was developed. The time history of excitation frequency of the fastening system was derived using the short time Fourier transform. The model was validated, using the results of a comprehensive field test carried out in this study. The frequency response of the track was studied to evaluate the effect of excitation frequency on the railway track response. The results obtained from the model were compared with those of the conventional linear model of vehicle/slab track interaction. The effects of vehicle speed, axle load, pad stiffness, fastening preload on the difference between the outputs obtained from the linear and nonlinear models were investigated through a parametric study. It was shown that the difference between the results obtained from linear and nonlinear models is up to 38 and 18 percent for RWFS and RFFS, respectively. Based on the outcomes obtained, a nonlinear to linear correction factor as a function of vehicle speed, vehicle axle load, pad stiffness and preload was derived. It was shown that consideration of the correction factor compensates the errors caused by the assumption of linear behavior for the fastening systems in the currently used vehicle track interaction models.

A CONVERSE THEOREM ON h-STABILITY VIA IMPULSIVE VARIATIONAL SYSTEMS

  • Choi, Sung Kyu;Koo, Namjip
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1115-1131
    • /
    • 2016
  • In this paper we develop useful relations which estimate the difference between the solutions of nonlinear impulsive differential systems with different initial values. Then we obtain the converse h-stability theorem of Massera's type for the nonlinear impulsive systems by employing the $t_{\infty}$-similarity of the associated impulsive variational systems and relations.

동적 귀환 신경망에 의한 비선형 시스템의 동정 (Identification of Nonlinear Systems based on Dynamic Recurrent Neural Networks)

  • 이상환;김대준;심귀보
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1997년도 추계학술대회 학술발표 논문집
    • /
    • pp.413-416
    • /
    • 1997
  • Recently, dynamic recurrent neural networks(DRNN) for identification of nonlinear dynamic systems have been researched extensively. In general, dynamic backpropagation was used to adjust the weights of neural networks. But, this method requires many complex calculations and has the possibility of falling into a local minimum. So, we propose a new approach to identify nonlinear dynamic systems using DRNN. In order to adjust the weights of neurons, we use evolution strategies, which is a method used to solve an optimal problem having many local minimums. DRNN trained by evolution strategies with mutation as the main operator can act as a plant emulator. And the fitness function of evolution strategies is based on the difference of the plant's outputs and DRNN's outputs. Thus, this new approach at identifying nonlinear dynamic system, when applied to the simulation of a two-link robot manipulator, demonstrates the performance and efficiency of this proposed approach.

  • PDF

비선형 천장 크레인시스템의 위치제어 알고리즘 개발 (Development of the Position Control Algorithm for Nonlinear Overhead Crane Systems)

  • 이종규;이상룡
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.142-147
    • /
    • 2000
  • An overhead crane system which transports an object by girder motion, trolley motion, and hoist motion becomes a nonlinear system because the length of a rope changes. To develope the position control algorithm for the nonlinear crane systems, we apply a nonlinear optimal control method which uses forward and backward difference methods and obtain optimal inputs. This method is suitable for the overhead crane system which is characterized by the differential equation of higher degree and swing motion. From the results of computer simulation, it is founded that the position of the overhead crane system is controlled, and the swing of the object is suppressed.

  • PDF

웨이블릿 신경 회로망을 이용한 혼돈 비선형 시스템에 대한 예측 제어기 설계 (The Design of Predictive Controller for Chaotic Nonlinear Systems Using Wavelet Neural Networks)

  • 박상우;최종태;최윤호;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2002년도 추계학술대회 및 정기총회
    • /
    • pp.183-186
    • /
    • 2002
  • In this paper, a predictive control method using wavelet neural network for chaotic nonlinear systems is presented. In our method, we use the adjusting method of the parameter for the training a wavelet neural network. The control signals are directly obtained by minimizing the difference between a reference signal and the output of a wavelet neural network. To verify the efficiency of our method, we apply it to the Duffing and the Henon system, which are a representative continuous and discrete time chaotic nonlinear system respectively.

A Simple Random Signal Generator Employing Current Mode Switched Capacitor Circuit

  • Yamakawa, Takeshi;Suetake, Noriaki;Miki, Tsutomu;Uchino, Eiji;Eguchi, Akihiro
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.865-868
    • /
    • 1993
  • This paper describes a simple random signal generator employing by CMOS analog technology in current mode. The system is a nonlinear dynamical system described by a difference equation, such as x(t+1) = f(x(t)) , t = 0,1,2, ... , where f($.$) is a nonlinear function of x(f). The tent map is used as a nonlinear function to produce the random signals with the uniform distribution. The prototype is implemented by using transistor array devices fabricated in a mass product line. It can be easily realized on a chip. Uniform randomness of the signal is examined by the serial correlation test and the $\chi$2 test.

  • PDF

Design of Generalized Predictive Controller for Chaotic Nonlinear Systems Using Fuzzy Neural Networks

  • Park, Jong-tae;Park, Jin-bae;Park, Yoon-ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.172.4-172
    • /
    • 2001
  • In this paper, the Generalized Predictive Control(GPC) method based on Fuzzy Neural Networks(FNNs) is presented for the control of chaotic nonlinear systems without precise mathematical models. In our method, FNNs is used as the predictor whose parameters are tuned by the error between the actual output of nonlinear chaotic system and that of FNNs model. The parameters of GPC controller are adjusted via the gradient descent method where the difference between the actual output and the reference signal is used as a control error. Finally, computer simulation on the representative continuous-time chaotic system(Duffing system) is presented to demonstrate the effectiveness of our chaos control method.

  • PDF