• Title/Summary/Keyword: nonlinear coupling

Search Result 358, Processing Time 0.025 seconds

LOCAL SYNCHRONIZATION OF MARKOVIAN NEURAL NETWORKS WITH NONLINEAR COUPLING

  • LI, CHUNJI;REN, XIAOTONG
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.3_4
    • /
    • pp.387-397
    • /
    • 2017
  • In order to react the dynamic behavior of the system more actually, it is necessary to solve the first problem of synchronization for Markovian jump complex network system in practical engineering problem. In this paper, the problem of local stochastic synchronization for Markovian nonlinear coupled neural network system is investigated, including nonlinear coupling terms and mode-dependent delays, that is less restriction to other system. By designing the Lyapunov-Krasovskii functional and applying less conservative inequality, we get a new criterion to ensure local synchronization in mean square for Markovian nonlinear coupled neural network system. The criterion introduced some free matrix variables, which are less conservative. The simulation confirmed the validity of the conclusion.

Behavioral Characteristics and Energy Dissipation Capacity of Coupling Beams Subject to Cyclic Loads (커플링보의 주기거동특성 및 에너지소산능력)

  • Eom, Tae-Sung;Park, Hong-Gun;Kang, Su-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.9-12
    • /
    • 2004
  • Coupling beams subject to cyclic loads exhibit different behavioral characteristics and energy dissipation capacity varying with re-bar layouts. In the present study, nonlinear analysis method was developed using analogous truss model. Using the numerical method, parametric studies were performed to investigate the behavioral characteristics and the energy dissipation mechanism of coupling beams with various re-bar layouts subject to cyclic loading. Based on the investigation, a simple and practical method for evaluating the energy dissipation capacity of coupling beams was developed and verified by experiments. The proposed method accurately predicted the dissipated energy during cyclic loading addressing design parameters such as re-bar layouts, re-bar ratio, and deformation. The proposed method can be easily applied to nonlinear static and dynamic methods for seismic analysis and design.

  • PDF

Hopf Bifurcation Study of Inductively Coupled Power Transfer Systems Based on SS-type Compensation

  • Xia, Chenyang;Yang, Ying;Peng, Yuxiang;Hu, Aiguo Patrick
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.655-664
    • /
    • 2019
  • In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then Filippov's method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an experimental platform is built to confirm the correctness of the numerical simulation and modeling.

On modeling coupling beams incorporating strain-hardening cement-based composites

  • Hung, Chung-Chan;Su, Yen-Fang
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.565-583
    • /
    • 2013
  • Existing numerical models for strain-hardening cement-based composites (SHCC) are short of providing sufficiently accurate solutions to the failure patterns of coupling beams of different designs. The objective of this study is to develop an effective model that is capable of simulating the nonlinear behavior of SHCC coupling beams subjected to cyclic loading. The beam model proposed in this study is a macro-scale plane stress model. The effects of cracks on the macro-scale behavior of SHCC coupling beams are smeared in an anisotropic model. In particular, the influence of the defined crack orientations on the simulation accuracy is explored. Extensive experimental data from coupling beams with different failure patterns are employed to evaluate the validity of the proposed SHCC coupling beam models. The results show that the use of the suggested shear stiffness retention factor for damaged SHCC coupling beams is able to effectively enhance the simulation accuracy, especially for shear-critical SHCC coupling beams. In addition, the definition of crack orientation for damaged coupling beams is found to be a critical factor influencing the simulation accuracy.

Performance based evaluation of RC coupled shear wall system with steel coupling beam

  • Bengar, Habib Akbarzadeh;Aski, Roja Mohammadalipour
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.337-355
    • /
    • 2016
  • Steel coupling beam in reinforced concrete (RC) coupled shear wall system is a proper substitute for deep concrete coupling beam. Previous studies have shown that RC coupled walls with steel or concrete coupling beam designed with strength-based design approach, may not guarantee a ductile behavior of a coupled shear wall system. Therefore, seismic performance evaluation of RC coupled shear wall with steel or concrete coupling beam designed based on a strength-based design approach is essential. In this paper first, buildings with 7, 14 and 21 stories containing RC coupled shear wall system with concrete and steel coupling beams were designed with strength-based design approach, then performance level of these buildings were evaluated under two spectrum; Design Basis Earthquake (DBE) and Maximum Considered Earthquake (MCE). The performance level of LS and CP of all buildings were satisfied under DBE and MCE respectively. In spite of the steel coupling beam, concrete coupling beam in RC coupled shear wall acts like a fuse under strong ground motion.

Rigid block coupled with a 2 d.o.f. system: Numerical and experimental investigation

  • Pagliaro, Stefano;Aloisio, Angelo;Alaggio, Rocco;Di Egidio, Angelo
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.539-562
    • /
    • 2020
  • In this paper the linear elastic coupling between a 2 degree of freedom shear-type frame system and a rigid block is analytically and experimentally investigated. As demonstrated by some of the authors in previous papers, it is possible to choose a coupling system able to guarantee advantages, whatever the mechanical characteristics of the frame. The main purpose of the investigation is to validate the analytical model. The nonlinear equations of motion of the coupled system are obtained by a Lagrangian approach and successively numerically integrated under harmonic and seismic excitation. The results, in terms of gain graphs, maps and spectra, represent the ratio between the maximum displacements or drifts of the coupled and uncoupled systems as a function of the system's parameters. Numerical investigations show the effectiveness of the nonlinear coupling for a large set of parameters. Thus experimental tests are carried out to verify the analytical results. An electro-dynamic long-stroke shaker sinusoidally and seismically forces a shear-type 2 d.o.f frame coupled with a rigid aluminium block. The experimental investigations confirm the effectiveness of the coupling as predicted by the analytical model.

Coupling non-matching finite element discretizations in small-deformation inelasticity: Numerical integration of interface variables

  • Amaireh, Layla K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.8 no.1
    • /
    • pp.71-93
    • /
    • 2019
  • Finite element simulations of solid mechanics problems often involve the use of Non-Confirming Meshes (NCM) to increase accuracy in capturing nonlinear behavior, including damage and plasticity, in part of a solid domain without an undue increase in computational costs. In the presence of material nonlinearity and plasticity, higher-order variables are often needed to capture nonlinear behavior and material history on non-conforming interfaces. The most popular formulations for coupling non-conforming meshes are dual methods that involve the interpolation of a traction field on the interface. These methods are subject to the Ladyzhenskaya-Babuska-Brezzi (LBB) stability condition, and are therefore limited in their implementation with the higher-order elements needed to capture nonlinear material behavior. Alternatively, the enriched discontinuous Galerkin approach (EDGA) (Haikal and Hjelmstad 2010) is a primal method that provides higher order kinematic fields on the interface, and in which interface tractions are computed from local finite element estimates, therefore facilitating its implementation with nonlinear material models. The inclusion of higher-order interface variables, however, presents the issue of preserving material history at integration points when a increase in integration order is needed. In this study, the enriched discontinuous Galerkin approach (EDGA) is extended to the case of small-deformation plasticity. An interface-driven Gauss-Kronrod integration rule is proposed to enable adaptive enrichment on the interface while preserving history-dependent material data at existing integration points. The method is implemented using classical J2 plasticity theory as well as the pressure-dependent Drucker-Prager material model. We show that an efficient treatment of interface variables can improve algorithmic performance and provide a consistent approach for coupling non-conforming meshes in inelasticity.

On the kinematic coupling of 1D and 3D finite elements: a structural model

  • Yue, Jianguang;Fafitis, Apostolos;Qian, Jiang
    • Interaction and multiscale mechanics
    • /
    • v.3 no.2
    • /
    • pp.192-211
    • /
    • 2010
  • In most framed structures the nonlinearities and the damages are localized, extending over a limited length of the structural member. In order to capture the details of the local damage, the segments of a member that have entered the nonlinear range may need to be analyzed using the three-dimensional element (3D) model whereas the rest of the member can be analyzed using the simpler one-dimensional (1D) element model with fewer degrees of freedom. An Element-Coupling model was proposed to couple the small scale solid 3D elements with the large scale 1D beam elements. The mixed dimensional coupling is performed imposing the kinematic coupling hypothesis of the 1D model on the interfaces of the 3D model. The analysis results are compared with test results of a reinforced concrete pipe column and a structure consisting of reinforced concrete columns and a steel space truss subjected to static and dynamic loading. This structure is a reduced scale model of a direct air-cooled condenser support platform built in a thermal power plant. The reduction scale for the column as well as for the structure was 1:8. The same structures are also analyzed using 3D solid elements for the entire structure to demonstrate the validity of the Element-Coupling model. A comparison of the accuracy and the computational effort indicates that by the proposed Element-Coupling method the accuracy is almost the same but the computational effort is significantly reduced.

Adaptive Cross-Coupling Control System Considering Cutting Effects (절삭효과를 고려한 적응 교차축 연동제어 시스템)

  • Ji, Seong-Cheol;Yu, Sang-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1480-1486
    • /
    • 2002
  • In this study, the cross-coupling control (CCC) with three new features is proposed to maintain contour precision in high-speed nonlinear contour machining. One is an improved contour error model that provides almost exact calculation of the errors. Another is the utilization of variable controller gains based on the instantaneous curvature of the contour and the variable command. For this scheme, a stability is analyzed. As a result, the stability region is obtained, and the variable gains are decided within that region. The other scheme in the proposed CCC is a real-time feedrate adaptation module to regulate cutting force fur better surface finish through regulation of material removal rate (MRR). The simulation results show that the proposed CCC system can provide better precision than the existing method particularly in high-speed machining of nonlinear contours.

Behavior, Design, and Modeling of Structural Walls and Coupling Beams - Lessons from Recent Laboratory Tests and Earthquakes

  • Wallace, John W.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.3-18
    • /
    • 2012
  • Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-$11^1$ can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.