Browse > Article
http://dx.doi.org/10.12989/csm.2020.9.6.539

Rigid block coupled with a 2 d.o.f. system: Numerical and experimental investigation  

Pagliaro, Stefano (DICEAA - University of L'Aquila)
Aloisio, Angelo (DICEAA - University of L'Aquila)
Alaggio, Rocco (DICEAA - University of L'Aquila)
Di Egidio, Angelo (DICEAA - University of L'Aquila)
Publication Information
Coupled systems mechanics / v.9, no.6, 2020 , pp. 539-562 More about this Journal
Abstract
In this paper the linear elastic coupling between a 2 degree of freedom shear-type frame system and a rigid block is analytically and experimentally investigated. As demonstrated by some of the authors in previous papers, it is possible to choose a coupling system able to guarantee advantages, whatever the mechanical characteristics of the frame. The main purpose of the investigation is to validate the analytical model. The nonlinear equations of motion of the coupled system are obtained by a Lagrangian approach and successively numerically integrated under harmonic and seismic excitation. The results, in terms of gain graphs, maps and spectra, represent the ratio between the maximum displacements or drifts of the coupled and uncoupled systems as a function of the system's parameters. Numerical investigations show the effectiveness of the nonlinear coupling for a large set of parameters. Thus experimental tests are carried out to verify the analytical results. An electro-dynamic long-stroke shaker sinusoidally and seismically forces a shear-type 2 d.o.f frame coupled with a rigid aluminium block. The experimental investigations confirm the effectiveness of the coupling as predicted by the analytical model.
Keywords
elastic coupling; rigid block; gain coefficients and maps; experimental investigation;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Makris, N. and Aghagholizadeh, M. (2017), "The dynamics of an elastic structure coupled with a rocking wall", Soil Dyn. Earthq. Eng., 46, 945-954. https://doi.org/10.1002/eqe.2838.   DOI
2 Makris, N. and Zhang, J. (2001), "Rocking response of anchored blocks under pulse-type motions", J. Eng. Mech., 127(5), 484-493. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(484).   DOI
3 Muratovi, A. and Ademovi, N. (2015), "Influence of masonry infill on reinforced concrete frame structures seismic response", Coupl. Syst. Mech., 4(2), 173-189. http://dx.doi.org/10.12989/csm.2015.4.2.173.   DOI
4 Ormeo, M., Tam Larkin, T. and Chouw, N. (2012), "Influence of uplift on liquid storage tanks during earthquakes", Coupl. Syst. Mech., 1(4), 311-324. http://dx.doi.org/10.12989/csm.2012.1.4.311.   DOI
5 Pompei, A., Scalia, A. and Sumbatyan, M. (1998), "Dynamics of rigid block due to horizontal ground motion", J. Eng. Mech., 124(7), 713-717. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:7(713).   DOI
6 Psycharis, I.N., Fragiadakis, M. and Stefanou, I. (2013), "Seismic reliability assessment of classical columns subjected to nearfault ground motions", Earthq. Eng. Struct. Dyn., 42(14), 2061-2079. https://doi.org/10.1002/eqe.2312.   DOI
7 Shenton, H. (1996), "Criteria for initiation of slide, rock, and slide-rock rigid-body modes", J. Eng. Mech., 122(7), 690-693. https://doi.org/10.1061/(ASCE)0733-9399(1996)122:7(690).   DOI
8 Shenton, H. and Jones, N. (1991), "Base excitation of rigid bodies. I: Formulation", J. Eng. Mech., 117(10), 2286-2306. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:10(2286).   DOI
9 Simoneschi, G., de Leo, A. and Di Egidio, A. (2017a), "Effectiveness of oscillating mass damper system in the protection of rigid blocks under impulsive excitation", Eng. Struct., 137, 285-295. https://doi.org/10.1016/j.engstruct.2017.01.069.   DOI
10 Andreaus, U. (1990), "Sliding-uplifting response of rigid blocks to base excitation", Earthq. Eng. Struct. Dyn., 19(8), 1181-1196. https://doi.org/10.1002/eqe.4290190808.   DOI
11 Brzeski, P., Kapitaniak, T. and Perlikowski, P. (2016), "The use of tuned mass absorber to prevent overturning of the rigid block during earthquake", Int. J. Struct. Stab. Dyn., 6(10), Article ID 1550075. https://doi.org/10.1142/S0219455415500753.   DOI
12 Calio, I. and Marletta, M. (2003), "Passive control of the seismic response of art objects", Eng. Struct., 25, 1009-1018. https://doi.org/10.1016/S0141-0296(03)00045-2.   DOI
13 Ceravolo, R., Pecorelli, M. and Zanotti Fragonara, L. (2016), "Semi-active control of the rocking motion of monolithic art objects", J. Sound Vib., 374, 1-16. https://doi.org/10.1016/j.jsv.2016.03.038.   DOI
14 Contento, A. and Di Egidio, A. (2014), "On the use of base isolation for the protection of rigid bodies placed on a multi-storey frame under seismic excitation", Eng. Struct., 62-63, 1-10. https://doi.org/10.1016/j.engstruct.2014.01.019.   DOI
15 Ceravolo, R., Pecorelli, M. and Zanotti Fragonara, L. (2017), "Comparison of semi-active control strategies for rocking objects under pulse and harmonic excitations", Mech. Syst. Signal Pr., 90, 175-188. https://doi.org/10.1016/j.ymssp.2016.12.006.   DOI
16 Collini, L., Garziera, R., Riabova, K., Munitsyna, M. and Tasora, A. (2016), "Oscillations control of rockingblock-type buildings by the addition of a tuned pendulum", Shock Vib., 2016, Article ID 8570538. https://doi.org/10.1155/2016/8570538.   DOI
17 Contento, A. and Di Egidio, A. (2009), "Investigations into benefits of base isolation for NonSymmetric rigid blocks", Earthq. Eng. Struct. Dyn., 38, 849-866.   DOI
18 Spanos, P. and Koh, A. (1984), "Rocking of rigid blocks due to harmonic shaking", J. Eng. Mech., 110, 1627-1642. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:11(1627).   DOI
19 Simoneschi, G., Olivieri, C., de Leo, A. and Di Egidio, A. (2018), "Pole placement method to control the rocking motion of rigid blocks", Eng. Struct., 167, 39-47. https://doi.org/10.1016/j.engstruct.2018.04.016.   DOI
20 Sorrentino, L., AlShawa, O. and Decanini, L. (2011), "The relevance of energy damping in unreinforced masonry rocking mechanisms. Experimental and analytic investigations", Bull. Earthq. Eng., 9(5), 1617-1642. https://doi.org/10.1007/s10518-011-9291-1.   DOI
21 Spanos, P. and Koh, A. (1986), "Analysis of block random rocking", Soil Dyn. Earthq. Eng., 5, 178-183. https://doi.org/10.1016/0267-7261(86)90021-7.   DOI
22 Spanos, P., Di Matteo, A., Pirrotta, A. and Di Paola, M. (2017), "Rocking of rigid block on nonlinear flexible foundation", Int. J. Nonlin. Mech., 94, 362-374. https://doi.org/10.1016/j.ijnonlinmec.2017.06.005.   DOI
23 Taniguchi, T. (2002), "Non-linear response analyses of rectangular rigid bodies subjected to horizontal and vertical ground motion", Earthq. Eng. Struct. Dyn., 31, 1481-1500. https://doi.org/10.1002/eqe.170.   DOI
24 Ther, T. and Kollar, L. (2016), "Refinement of Housners model on rocking blocks", Bull. Earthq. Eng., 15, 2305-2319. https://doi.org/10.1016/S0267-7261(02)00115-X.   DOI
25 Dar, A., Konstantinidis, D. and ElDakhakhni, W. (2018), "Seismic response of rocking frames with top support eccentricity", Earthq. Eng. Struct. Dyn., 47(12), 2496-2518. https://doi.org/10.1002/eqe.3096.   DOI
26 Contento, A., Gardoni, P., Di Egidio, A. and de Leo, A. (2017), "Probabilistic models to assess the seismic safety of rigid block-like structures and the effectiveness of two safety devices", Procedia Eng., 199(2017), 1164-1169. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002431.   DOI
27 Contento, A., Gardoni, P., Di Egidio, A. and de Leo, A. (2019), "Probabilistic models to assess the seismic safety of rigid block-like elements and the effectiveness of two safety devices", J. Struct. Eng., 145(11), 04019133. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002431.   DOI
28 Corbi, O. (2006), "Laboratory investigation on sloshing water dampers coupled to rigid blocks with unilateral constraints", Int. J. Mech. Solid., 1(1), 29-40.
29 Tung, C. (2007), "Initiation of motion of a free-standing body to base excitation", Earthq. Eng. Struct. Dyn., 36, 1431-1439. https://doi.org/10.1002/eqe.703.   DOI
30 Simoneschi, G., Geniola, A., de Leo, A. and Di Egidio, A. (2017b), "On the seismic performances of rigid blocks coupled with an oscillating mass working as TMD", Earthq. Eng. Struct. Dyn., 46, 1453-1469. https://doi.org/10.1002/eqe.2864.   DOI
31 de Leo, A., Simoneschi, G., Fabrizio, C. and Di Egidio, A. (2016), "On the use of a pendulum as mass damper to control the rocking motion of a non-symmetric rigid block", Meccanica, 51, 2727-2740. https://doi.org/10.1007/s11012-016-0448-5.   DOI
32 DeJong, M. and Dimitrakopoulos, E. (2014), "Dynamically equivalent rocking structures", Earthq. Eng. Struct. Dyn., 43(10), 1543-1563. https://doi.org/10.1002/eqe.2410.   DOI
33 Di Egidio, A. and Contento, A. (2009), "Base isolation of sliding-rocking non-symmetyric rigid blocks subjected to impulsive and seismic excitations", Eng. Struct., 31, 2723-2734.   DOI
34 Di Egidio, A. and Contento, A. (2010), "Seismic response of a non-symmetric rigid block on a constrained oscillating base", Eng. Struct., 32, 3028-3039. https://doi.org/10.1016/j.engstruct.2010.05.022.   DOI
35 Wada, A., Qu, Z., Motoyui, S. and Sakata, H. (2011), "Seismic retrofit of existing SRC frames using rocking walls and steel dampers", Front. Arch. Civil Eng. China, 5(3), 259266. https://doi.org/10.1007/s11709-011-0114-x.   DOI
36 Di Egidio, A., Alaggio, R., Aloisio, A., de Leo, A., Contento, A. and Tursini, M. (2019a), "Analytical and experimental investigation into the effectiveness of a pendulum dynamic absorber to protect rigid blocks from overturning", Int. J. Nonlin. Mech., 115, 1-10. https://doi.org/10.1016/j.ijnonlinmec.2019.04.011.   DOI
37 Di Egidio, A., Alaggio, R., Contento, A., Tursini, M. and Della Loggia, E. (2015), "Experimental characterization of the overturning of three-dimensional square based rigid block", Int. J. Nonlin. Mech., 69, 137-145. https://doi.org/10.1016/j.ijnonlinmec.2014.12.003.   DOI
38 Vassiliou, M. and Makris, N. (2012), "Analysis of the rocking response of rigid blocks standing free on a seismically isolated base", Earthq. Eng. Struct. Dyn., 41(2), 177-196. https://doi.org/10.1002/eqe.1124.   DOI
39 Vassiliou, M., K.R., M. and Stojadinovi, B. (2014), "Dynamic response analysis of solitary flexible rocking bodies: modeling and behavior under pulselike ground excitation", Earthq. Eng. Struct. Dyn., 43(10), 1463-1481. https://doi.org/10.1002/eqe.2406.   DOI
40 Voyagaki Ioannis, E., Psycharis, I. and Mylonakis, G. (2013), "Rocking response and overturning criteria for free standing rigid blocks to singlelobe pulses", Soil Dyn. Earthq. Eng., 46, 85-95. https://doi.org/10.1016/j.soildyn.2012.11.010.   DOI
41 Yim, C., Chopra, A. and Penzien, J. (1980), "Rocking response of rigid blocks to earthquakes", Earthq. Eng. Struct. Dyn., 438(6), 565-587. https://doi.org/10.1002/eqe.4290080606.   DOI
42 Di Egidio, A., de Leo, A. and Simoneschi, G. (2018), "Effectiveness of mass-damper dynamic absorber on rocking block under one-sine pulse ground motion", Int. Limit. Nonlin. Mech., 98, 154-162. https://doi.org/10.1016/j.ijnonlinmec.2017.10.015.   DOI
43 Di Egidio, A., Contento, A., Fabrizio, C. and de Leo, A. (2019b), "Visco-elastic coupling between a linear two-dof system and a rocking rigid block to improve the dynamic response", J. Phys.: Conf. Ser., 1264(2019), 012029.   DOI
44 Di Egidio, A., Contento, A., Olivieri, C. and de Leo, A. (2020a), "Protection from overturning of rigid blocklike objects with Linear Quadratic Regulator active control", Struct. Control Hlth Monit., 27, e2598. https://doi.org/10.1002/stc.2598.   DOI
45 Di Egidio, A., de Leo, A. and Contento, A. (2019c), "The use of a pendulum dynamic mass absorber to protect a trilithic symmetric system from the overturning", Math. Prob. Eng., 2019, Article ID 4843738, 14. https://doi.org/10.1155/2019/4843738.   DOI
46 Di Egidio, A., Pagliaro, S., Fabrizio, C. and de Leo, A. (2019d), "Dynamic response of a linear two d.o.f system visco-elastically coupled with a rigid block", Coupl. Syst. Mech., 8(4), 351-375. https://doi.org/10.12989/csm.2019.8.4.351.   DOI
47 Aghagholizadeh, M. and Makris, N. (2018), "Earthquake response analysis of yielding structures coupled with vertically restrained rocking walls", Earthq. Eng. Struct. Dyn., 47(15), 2965-2984. https://doi.org/10.1002/eqe.3116.   DOI
48 Zhang, J. and Makris, N. (2001), "Rocking response of free-standing blocks under cycloidal pulses", J. Eng. Mech., 127(5), 473-483. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(473).   DOI
49 Zulli, D., Contento, A. and Di Egidio, A. (2012), "Three-dimensional model of rigid block with a rectangular base subject to pulse-type excitation", Int. J. Nonlin. Mech., 47, 679-687. https://doi.org/10.1016/j.ijnonlinmec.2011.11.004.   DOI
50 Acikgoz, S., Ma, Q., Palermo, A. and DeJong, M. (2016), "Experimental identification of the dynamic characteristics of a flexible rocking structure", J. Earthq. Eng., 20(8), 1199-1221. https://doi.org/10.1080/13632469.2016.1138169.   DOI
51 Aloisio, A., Alaggio, R. and Fragiacomo, M. (2019a), "Dynamic identification of a masonry facade from seismic response data based on an elementary Ordinary Least Squares approach", Eng. Struct., 197, 109415. https://doi.org/10.1016/j.engstruct.2019.109415.   DOI
52 Aloisio, A., Antonacci, E., Fragiacomo, M. and Alaggio, R. (2020), "The recorded seismic response of the Santa Maria di Collemaggio basilica to low-intensity earthquakes", Int. J. Arch. Heritage, 1-19. https://doi.org/10.1080/15583058.2020.1802533.   DOI
53 Aloisio, A., Di Battista, L., Alaggio, R. and Fragiacomo, M. (2019b), "Analysis of the forced dynamics of a masonry facade by means of input-output techniques and a linear regression model", COMPDYN 2019, 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering.
54 Di Egidio, A., Pagliaro, S., Fabrizio, C. and de Leo, A. (2020b), "Seismic performance of frame structures coupled with an external rocking wall", Eng. Struct., 224, 111207. https://doi.org/10.1016/j.engstruct.2020.111207.   DOI
55 Di Egidio, A., Simoneschi, G., Olivieri, C. and de Leo, A. (2014a), "Protection of slender rigid blocks from the overturning by using an active control system", Proceedings of the XXIII Conference The Italian Association of Theoretical and Applied Mechanics.
56 Di Egidio, A., Zulli, D. and Contento, A. (2014b), "Comparison between the seismic response of 2D and 3D models of rigid blocks", Earthq. Eng. Eng. Vib., 13, 151-162. https://doi.org/10.1007/s11803-014-0219-z.   DOI
57 Fabrizio, C., de Leo, A. and Di Egidio, A. (2019), "Tuned mass damper and base isolation: a unitary approach for the seismic protection of conventional frame structures", J. Eng. Mech., 145(4), 04019011. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001581.   DOI
58 Diamantopoulos, S. and Fragiadakis, M. (2019), "Seismic response assessment of rocking systems using single degreeoffreedom oscillators", Earthq. Eng. Struct. Dyn., 48(7), 689-708. https://doi.org/10.1002/eqe.3157.   DOI
59 Dimitrakopoulos, E. and DeJong, M. (2012), "Overturning of retrofitted rocking structures under pulse-type excitations", J. Eng. Mech., 138, 963-972. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000410.   DOI
60 Fabrizio, C., de Leo, A. and Di Egidio, A. (2017a), "Structural disconnection as a general technique to improve the dynamic and seismic response of structures: a basic model", Procedia Eng., 199, 1635-1640. https://doi.org/10.1016/j.proeng.2017.09.086.   DOI
61 Fabrizio, C., Di Egidio, A. and de Leo, A. (2017b), "Top disconnection versus base disconnection in structures subjected to harmonic base excitation", Eng. Struct., 152, 660-670. https://doi.org/10.1016/j.engstruct.2017.09.041.   DOI
62 Grigorian, C. and Grigorian, M. (2015), "Performance control and efficient design of rocking-wall moment frames", J. Struct. Eng., 142(2), 04015193. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001411.   DOI
63 Housner, G. (1963), "The behavior of inverted pendulum structures during earthquakes", Bull. Seismol. Soc. Am., 53(2), 404417.
64 Huang, W., McClurea, G. and Hussainzadab, N. (2013), "Seismic interactions between suspended ceilings and nonstructural partition walls", Coupl. Syst. Mech., 2(4), 329-348. https://doi.org/10.12989/csm.2013.2.4.329.   DOI
65 Kounadis, A. (2015), "New findings in the rocking instability of one and two rigid block systems under ground motion", Meccanica, 50(9), 2219-2238. https://doi.org/10.1007/s11012-015-0167-3.   DOI
66 Kalliontzis, D., Sritharan, S. and Schultz, A. (2016), "Improved coefficient of restitution estimation for free rocking members", J. Struct. Eng., 142, 06016002. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001598.   DOI
67 Khatiwada, S., Nawawi and Chouw, N. (2013), "A shake table investigation on interaction between buildings in a row", Coupl. Syst. Mech., 2(2), 175-190. https://doi.org/10.12989/csm.2013.2.2.175.   DOI
68 Kounadis, A. (2014), "Rocking instability of free-standing statues atop slender viscoelastic columns under ground motion", Soil Dyn. Earthq. Eng., 63(9), 83-91. https://doi.org/10.1016/j.soildyn.2014.01.021.   DOI
69 Kounadis, A. (2018), "The effect of sliding on the rocking instability of multi-rigid block assemblies under ground motion", Soil Dyn. Earthq. Eng., 104, 1-14. https://doi.org/10.1016/j.soildyn.2017.03.035.   DOI
70 Kounadis, A.N. (2013), "Parametric study in rocking instability of a rigid block under harmonic ground pulse: a unified approach", Soil Dyn. Earthq. Eng., 45, 125143. https://doi.org/10.1016/j.soildyn.2012.10.002.   DOI