• 제목/요약/키워드: nonlinear algebraic system

검색결과 68건 처리시간 0.025초

Size-dependent nonlinear pull-in instability of a bi-directional functionally graded microbeam

  • Rahim Vesal;Ahad Amiri
    • Steel and Composite Structures
    • /
    • 제52권5호
    • /
    • pp.501-513
    • /
    • 2024
  • Two-directional functionally graded materials (2D-FGMs) show extraordinary physical properties which makes them ideal candidates for designing smart micro-switches. Pull-in instability is one of the most critical challenges in the design of electrostatically-actuated microswitches. The present research aims to bridge the gap in the static pull-in instability analysis of microswitches composed of 2D-FGM. Euler-Bernoulli beam theory with geometrical nonlinearity effect (i.e. von-Karman nonlinearity) in conjunction with the modified couple stress theory (MCST) are employed for mathematical formulation. The micro-switch is subjected to electrostatic actuation with fringing field effect and Casimir force. Hamilton's principle is utilized to derive the governing equations of the system and corresponding boundary conditions. Due to the extreme nonlinear coupling of the governing equations and boundary conditions as well as the existence of terms with variable coefficients, it was difficult to solve the obtained equations analytically. Therefore, differential quadrature method (DQM) is hired to discretize the obtained nonlinear coupled equations and non-classical boundary conditions. The result is a system of nonlinear coupled algebraic equations, which are solved via Newton-Raphson method. A parametric study is then implemented for clamped-clamped and cantilever switches to explore the static pull-in response of the system. The influences of the FG indexes in two directions, length scale parameter, and initial gap are discussed in detail.

Waviness가 있는 볼베어링으로 지지된 회전계의 안정성 해석 (Stability Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness)

  • 정성원;장건희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.181-189
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness in a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time-varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i= 1,2,3..).

  • PDF

비선형 시스템의 샘플링을 전제한 입출력 디커플링 (Sampled Input-output Decoupling of The Nonlinear Systems)

  • 김용민;이홍기;전홍태
    • 전자공학회논문지B
    • /
    • 제32B권10호
    • /
    • pp.1247-1258
    • /
    • 1995
  • Input-output decoupling is well-known to be effective in the control of the nonlinear systems. This paper points out some problems of this technique in applications, and obtains a new digital input-output decoupling feedback law by using the inherent structure of the system. The effectiveness (accuracy) of our new control technique are confirmed by simple computer simulations. Finally, a digital compensator is also designed. The problems we study are of importance in the field of nonlinear control of robots, aerospace navigation, and vehicular control. The methodology to be employed involves both algebraic and geometric aspects of the systems.

  • PDF

TWO-SCALE PRODUCT APPROXIMATION FOR SEMILINEAR PARABOLIC PROBLEMS IN MIXED METHODS

  • Kim, Dongho;Park, Eun-Jae;Seo, Boyoon
    • 대한수학회지
    • /
    • 제51권2호
    • /
    • pp.267-288
    • /
    • 2014
  • We propose and analyze two-scale product approximation for semilinear heat equations in the mixed finite element method. In order to efficiently resolve nonlinear algebraic equations resulting from the mixed method for semilinear parabolic problems, we treat the nonlinear terms using some interpolation operator and exploit a two-scale grid algorithm. With this scheme, the nonlinear problem is reduced to a linear problem on a fine scale mesh without losing overall accuracy of the final system. We derive optimal order $L^{\infty}((0, T];L^2({\Omega}))$-error estimates for the relevant variables. Numerical results are presented to support the theory developed in this paper.

Implementation of the modified compression field theory in a tangent stiffness-based finite element formulation

  • Aquino, Wilkins;Erdem, Ibrahim
    • Steel and Composite Structures
    • /
    • 제7권4호
    • /
    • pp.263-278
    • /
    • 2007
  • A finite element implementation of the modified compression field theory (MCFT) using a tangential formulation is presented in this work. Previous work reported on implementations of MCFT has concentrated mainly on secant formulations. This work describes details of the implementation of a modular algorithmic structure of a reinforced concrete constitutive model in nonlinear finite element schemes that use a Jacobian matrix in the solution of the nonlinear system of algebraic equations. The implementation was verified and validated using experimental and analytical data reported in the literature. The developed algorithm, which converges accurately and quickly, can be easily implemented in any finite element code.

TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용 (Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems)

  • 장욱;주영훈;박진배
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제49권2호
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

비정렬격자계를 사용하는 3차원 유동해석코드 개발 (I) - 수치해석방법 - (Development of 3-D Flow Analysis Code Using Unstructured Grid System (I) - Numerical Method -)

  • 김종태;명현국
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1049-1056
    • /
    • 2005
  • A conservative pressure-based finite-volume numerical method has been developed for computing flow and heat transfer by using an unstructured grid system. The method admits arbitrary convex polyhedra. Care is taken in the discretization and solution procedures to avoid formulations that are cell-shape-specific. A collocated variable arrangement formulation is developed, i.e. all dependent variables such as pressure and velocity are stored at cell centers. Gradients required for the evaluation of diffusion fluxes and for second-order-accurate convective operators are found by a novel second-order accurate spatial discretization. Momentum interpolation is used to prevent pressure checkerboarding and the SIMPLE algorithm is used for pressure-velocity coupling. The resulting set of coupled nonlinear algebraic equations is solved by employing a segregated approach, leading to a decoupled set of linear algebraic equations fer each dependent variable, with a sparse diagonally dominant coefficient matrix. These equations are solved by an iterative preconditioned conjugate gradient solver which retains the sparsity of the coefficient matrix, thus achieving a very efficient use of computer resources.

Waviness가 있는 볼베어링으로 지지된 회전계의 동특성 해석 (II)-안정성 해석 - (Dynamic Analysis of a Rotating System Due to the Effect of Ball Bearing Waviness (I) -Vibration Analysis-)

  • 정성원;장건희
    • 대한기계학회논문집A
    • /
    • 제26권12호
    • /
    • pp.2647-2655
    • /
    • 2002
  • This research presents an analytical model to investigate the stability due to the ball bearing waviness i n a rotating system supported by two ball bearings. The stiffness of a ball bearing changes periodically due to the waviness in the rolling elements as the rotor rotates, and it can be calculated by differentiating the nonlinear contact forces. The linearized equations of motion can be represented as a parametrically excited system in the form of Mathieu's equation, because the stiffness coefficients have time -varying components due to the waviness. Their solution can be assumed as a Fourier series expansion so that the equations of motion can be rewritten as the simultaneous algebraic equations with respect to the Fourier coefficients. Then, stability can be determined by solving the Hill's infinite determinant of these algebraic equations. The validity of this research is proved by comparing the stability chart with the time responses of the vibration model suggested by prior researches. This research shows that the waviness in the rolling elements of a ball bearing generates the time-varying component of the stiffness coefficient, whose frequency is called the frequency of the parametric excitation. It also shows that the instability takes place from the positions in which the ratio of the natural frequency to the frequency of the parametric excitation corresponds to i/2 (i=1,2,3..).

THE SENSITIVITY OF STRUCTURAL RESPONSE USING FINITE ELEMENTS IN TIME

  • Park, Sungho;Kim, Seung-Jo
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제3권1호
    • /
    • pp.66-80
    • /
    • 2002
  • The bilinear formulation proposed earlier by Peters and Izadpanah to develop finite elements in time to solve undamped linear systems, Is extended (and found to be readily amenable) to develop time finite elements to obtain transient responses of both linear and nonlinear, and damped and undamped systems. The formulation Is used in the h-, p- and hp-versions. The resulting linear and nonlinear algebraic equations are differentiated to obtain the first- and second-order sensitivities of the transient response with respect to various system parameters. The present developments were tested on a series of linear and nonlinear examples and were found to yield, when compared with results obtained using other methods, excellent results for both the transient response and Its sensitivity to system parameters. Mostly. the results were obtained using the Legendre polynomials as basis functions, though. in some cases other orthogonal polynomials namely. the Hermite. the Chebyshev, and integrated Legendre polynomials were also employed (but to no great advantage). A key advantage of the time finite element method, and the one often overlooked in its past applications, is the ease In which the sensitivity of the transient response with respect to various system parameters can be obtained. The results of sensitivity analysis can be used for approximate schemes for efficient solution of design optimization problems. Also. the results can be applied to gradient-based parameter identification schemes.

  • PDF

A KANTOROVICH-TYPE CONVERGENCE ANALYSIS FOR THE QUASI-GAUSS-NEWTON METHOD

  • Kim, S.
    • 대한수학회지
    • /
    • 제33권4호
    • /
    • pp.865-878
    • /
    • 1996
  • We consider numerical methods for finding a solution to a nonlinear system of algebraic equations $$ (1) f(x) = 0, $$ where the function $f : R^n \to R^n$ is ain $x \in R^n$. In [10], a quasi-Gauss-Newton method is proposed and shown the computational efficiency over SQRT algorithm by numerical experiments. The convergence rate of the method has not been proved theoretically. In this paper, we show theoretically that the iterate $x_k$ obtained from the quasi-Gauss-Newton method for the problem (1) actually converges to a root by Kantorovich-type convergence analysis. We also show the rate of convergence of the method is superlinear.

  • PDF