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A KANTOROVICH-TYPE CONVERGENCE ANALYSIS
FOR THE QUASI-GAUSS-NEWTON METHOD

S. Kim

1. Introduction

We consider numerical methods for finding a solution to a nonlinear
system of algebraic equations

(1) flx) =0,

where the function f : R® — R™ isin z € R™. In [10], a quasi-Gauss-
Newton method is proposed and shown the computational efficiency
over SQRT algorithm by numerical experiments. The convergence rate
of the method has not been proved theoretically. In this paper, we
show theoretically that the iterate z) obtained from the quasi-Gauss-
Newton method for the problem (1) actually converges to a root by
Kantorovich-type convergence analysis. We also show the rate of con-
vergence of the method is superlinear.

Since the quasi-Gauss-Newton method is a modified Gauss-Newton
method, we first discuss Gauss-Newton method briefly. Gauss-Newton
method solves

(2) J(z)TJ(2)s = —J(z)T f(x),

where J(z) is the Jacobian of f at z, for s at each iteration to have a
better approximation to a solution. The equation (2) is usually com-
puted by QR decomposition of J(z). If we use an approximation B for
J(z), then (2) becomes

(3) BTBs = —BTf(x).
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One of the most succesful approximations for J(z) is Broyden’s update
[1]. Wang showed in [10] that using LDLT factorization of BT B leads
to superior computational results than the SQRT method for a given
set of test problems and using the modified Cholesky factorization in
[6] reduces the number of operations from Q(n3) to O(n?) + n.

It is essential to give convergence analysis for the numerical methods
that are developed. Such convergence analysis of other methods for
systems of nonlinear equations can be found in (2, 3, 8, 7, 5, 9]. In
following sections, we first describe Quasi-Gauss-Newton method. And
then, we show the method is convergent to a root and its convergence
rate 1s superlinear. It is followed by a Kantorovich-type analysis for
the method.

2. Quasi-Gauss-Newton method

In this section, we describe the quasi-Gauss-Newton method in [10]
with the modified Cholesky factorization in [6] to solve (3).

The method uses an algorithm in [6] given as Algorithm 2.1 in this
section. It modifies a symmetric matrix 4 by a symmetric matrix of
rank one,

(4) A=A+ azT

and finds the Cholesky factors of 4 == IDL' from the factors of 4 =
LDLT. If BTB is modified by a rank-one update as in (4), then the

updated matrix ET—E can be obtained as follows.
(5) B B=B"B+azz" = L(D+app”) L7,

where Lp = z, and p is obtained from z. If we factor
D+ app” = LDLT,
the required modified Cholesky factors are of the forra,

B B=LIDITLT
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Therefore, ) )
L=LLD=D.

Initially, we need the orthogonal factorization of B to have BB =
RTR. Then, the initial L and D can be obtained from RTR. The
algorithm for updating L and D is:

Algorithm 2.1 [6]

Define a; = a,w(]) =z,

Do forj =1,..n:
()

pj=w;,
= 2
d]' = d]‘ + a;P3s
By = pja;/d;,

a1 = djaj/d;
Doforr=j+1,..,n.
W =) 1,

7” = lrj + Bjﬂ)£j+l)

KB=B+ ;fj—; is used in (5),

(6) BB=pTBy+p ' g sl S

STS STS STS STS

From the above equation, we can see that BT B is modified by a rank-2
update and (6) can be rewritten as

—T— . e
B B = BIB + Z]ZJI — ZQJ;T,

where z; = (B f + (1~ 7 F/2)&)/vZ and 2, = (B F — (14
7 F/2a1/Ve.

The algorithm for Quasi-Gauss-Newton method [10] using Broyden’s
update 1s:
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Algorithm 2.2

Given f:R" > R",z9< R",By € R™™".
Get QoRy = By

Ly from RT
Dy = (ri, ...,r2).

Do fork =1....:

Solve LkaL;{sk = —B,Zﬂf(;rk) for sy,
Thyy 1= g + Sk,
yk = f@r41) — flze),
ty = —B;;rf(xk).

_B T

Sk Sk

Get LDLY, LDLT by Algorithra 2.1.

In the next section, we will give a convergence analysis of Algorithm
2.2.

3. Superlinear Convergence of QGN

In this section, we show that the method by (6) is well defined and
converges to a solution of (1). We start with the bound deterioration
theorem of the method.

THEOREM 3.1. (The Bounded Deterioration Theorem) Let D C R"
be an open convex set containing Ty, rry1, withxy # r,. Let f : R" —
R™ B, ¢ R*"™ and

r T T T
: T T 7 frt18 '“fk+1 5fk+1 fre1s
(7) BiyBis41 = B By + By T + T B; + T aTs

If z, € D and J(x) obeys the weaker Lipschitz condition,

| J(2) = J(z )| < yllx — ¢.||, forall o €D,
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then, for both the Frobenius and I, matrix norms,

(8)  |l(Bis1 — J(z ) (Brss — J(z )|
<[IIBx — J(z,)|| + g‘(“l'k+l =zl + llzx — z.]l2)]%

Proof. Let J, = J(z,). Adding —JT By, -- Bl J.+ JTJ, to the
both sides of (7), we get

B\ Byt — I Biy — BL T .+ J!J,

. — Bys)sT
= BBy — JTByy1 — BL, J, + JTJ, + pry STZS)S :
sy — Bks)I s(y — Bks) (y — Bys)sT
+ T By + oT
(9) S S b S r
— Bs): — B
(B g+ WEBS <y__T_'iJS__]
S S S8
(y — Jus)sT 4 ss?
= [(Bx ~ JII - =— 5T ] T (B = T T
(y = Jus)s”
+ STS ]

Then, it follows that

lly = Jesll2

T
1(Bits = J)T(Biws = TN < I(Bx = T[T - S]] + 2 TP
Using

“I" 2 = 1v

TH

and

~
ly = Jusllz < S(llzers = 2ullz + |z = z4ll2)ls]]2

in [4], we have (8).
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THEOREM 3.2. (Linear Convergence Theorem) Let all the assump-
tions of Theorem 3.1 hold. Suppose that ||J(z,)™'|| < A and, for
arbitrary € and § > 0 we can choose 1o and By such that ||z — .|| <€
and ||By — J(z,)|| < é. If B! By satisfy
(10)

I(Bisr = J(22))" (Bigr = T())|

<Bx = Izl + lllzier =l 4 lzx — 2]

then x; converges at least linearly tc z,.

Proof. We will show that by induction, for £ =0,1,2, ...,

(11) (B — J)T(Bi — Jo)l| < [(2—27%)¢]
and

llell
(12) I|€k+1|1 < 5

Choose € and & such that
(13) 736 <1 and 3ve < 26.
When &k = 0,
1(Bo — J.)T(By = JOIl < I(Bo = JOII(Bo — Tl < 67,

by assumption. To show that [|e;|| < ﬂ%"u, we consider the following
equation from the iteration,

Bg‘Bn(Il —Tpl = —Bonol
Hence.

eo + (B Bo)™'(—Bg fo)
= eq + By (—fo+ f. + Jueo) — By ' J.eq.

i

€1
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In ” : H?
ledl < 1B Il = fo + fu + Jueol| + || Bo — Jul]leolll-

If [|J(2,)7"|| < B, using Theorem 3.1.4 in [4], it can be shown that

3
-1 < 23,
1By |l < 5
3.7
(14) llesl] < 5‘3 [§||€0|| + 6]ileq |-
Since
eoll o e <§
2 -2 -3

the mnequality (14) becomes

leall < ﬂ[ + 28] |leo]|

< ﬂ(SHEOH
¢ Lol
- 2

For k =0,1,...,2 — 1, let us assume that (11) and (12) hold. Then, for
k =1, using

1
leaf < 5 lleill;
fleior|| € 27CG=Ve, (12), and Theroem 3.1,
I(B: = J)"(Bi = Jo)|| < [(2-270")s + ——He, ol + flell}?

(15) < [2-2707Dye Z‘r’Hei-lmz

A
VY
—
Av]
[RV]
|
—
el
[ =]

We omit the proof of (12) since it is identical to the proof of the initial
step of the induction.
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THEOREM 3.4. (Superlinear Convergence) Let al! the assumptions
of Theorem 3.1 hold. Then, the sequence {z} generated by Algorithmn
2.2 is well defined and converges superlinearly to r,.

Proof. Define Ey = By — J,, and let || - || denote the [y vector norm.
From (9),

T < SKSE \ o7 SkSL
|Eks1Exsallr SN — ——)Ex Ex(I - ——)liF
S Sk Sk Sk

T

SkS — J,s Y — J4 Sk

*’2”Eh(l" §1k)”FNyk . k“Z_% H k : H2
Sh Sk llskll2 llskll2

)2

Using leteokllz < Z(llexll2 + llex+1liz) in the proof of Theorem 3.1

WHsxll2
and [|ex41]| < 3lexll, we have

ly — Juslla

(17 Tl

3 .
< —j—nekuz.

In view of Lemma 3.3 and (17),

1 |E{ Exsel®
01ETEx|lr llsell?

|Ef  Exsillr <|EY Eillp -

Sy Exllr

T

92 »
el + T llexl ™

This can be rewritten as

|E{ Ers?

ERE <2 EFEi||FIELExllF — |1ELy 1 Bkl F

+ 2 Bllerl + S llerl?)

From Theorem 3.2, HEIZE/C”P < 4% and ||Ex| < 26 for all k& > 0.
E;ozu llex]| < 2¢, and Z:o:O Hekn2 < 1;5

1K Exsi]l?

. . , 9~ 2
llsell? < 4éz[|iEzEkHF - 1|EIZ+ 1Ek+1H F+ 3oyl + “I%‘||f7k|‘2]-
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Summing for & = 0,1, ...7,

ElEys;)? » y
Z“ BBl < aoteg Bule - 8%, Bl

3672 leall + 22 Z lex

T 3
< 4%\ EJ Eollr + 667e + 777¢]
< 48%[46% + 66ye + 27%‘1,

which shows that
Z IEL Exsil?

T

1s finite. This implies (16). Therefore, Quasi-Gauss-Newton method
converges superlinearly.

4. A Kantorovich-type Analysis of QGN

THEOREM 4.1. Let all the assumptions of Theorem 3.1 hold. Then,
3 K
|1 B(xk) — J(z)llr < || Blza) = J(zo)llp + 572 zj = xj-1ll2.

Proof. Using Lemma 8.2.1 in [4],

3
1Bk = JkllF < || Bk—y = JkallF + 5’7ka ~Zr-1|

k
3
< ||Bo = Jollr + ‘2‘72 lz; — 25-al.
1=1
We now present the Kantorovich-type analysis for the Quasi-Gauss-
Newton method. Let us define S(y,68) = {z € R"|||jz —y| < é,y € R"}
and S(y, §) the closure of S(y. 6).
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THEOREM 4.2. Let all the assumptions of Theorem 3.1 hold and
By be nonsingular. Assume that 6, 3 and n are positive scalars such
that |Bo — Jollp < 6, 1By llr < B, ||Bg" f(zo)ll <,

B P 17
(1-388)2 —9
and 36 < 1/3. If S(z¢,t,) C D, where
9
ty = —(1 —336)(1 — V1 —9h),
953~

then xy by algorithm 2.2 is well-defined, remains in 5(zg,t,) and con-
verges to T,.

Proof. Let
9 5 1 -336 n
= I (o I
1) flt) = 31 = ()t +
Consider the iteration,
(19) tet1 — te = Bf(tk)s

where to = 0,k = 0,1.2.... Then, fity_y) = 1/3(tx — tx_1). Taylor

series expansion of f yields

(20) f(tk) = flto—) + f(te—1)(tx — ter) + %f”(tk )tk — te—1)?

In view of (18) and (20),

3 3 .
(21) Flte) = 337tk = thr) + 5ytios + 8(tk - i)
Substituting (21) into (19),
(22)
3 3 :
thtr —te = 35[1’7’(tk ~tgo1) + §7tk—1 + 6]tk — tk-1)

3
= 38[-y(tr +trh—1) + O)(tk — th_1).
4
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k=1,2,.... By to = 0 and (19), we have ¢; == n. It can be shown by
induction that ¢y is a strictly increasing sequence. Next, we show that
ty <t,. Using the fact that ¢, is a root of f(¢),

ty — tk+1 =ty — tk - /gf(tk)
- m%m —t) — F(t)
= BIF() — Flte) — FU(E0)(Es — t0)]

FIF) + %}(t* — )}

By (19) and (20),
1 " ; 2 1 1
te—teqr = B{Sf"(ER) it — )" + [F(14) + E](t* — 1)}
9 9
= At —te) + 5vte + 36}t — te)
9
= 5{17@* +tr) + 36} (s — tk).
Since t; = 0 and t, > 0, we have
(23) te<t, k=012 ..
Therefore, there exists a f < t, such that

(24) Hm t =1t.
ko0
Using (19) and (24), we have f(f) = 0, hencs, f = ¢, since ¢, is the
smallest root of f. We have shown that lim_.o = t..
We prove the followings by induction on k:

(25) {zi} C S(xo,t4),
(26) 1B 'Fr <38, k=12 ..,
and

(27) H:L’]H.l—.rkil Stk+1—tk, ’CZ].,Q,
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When k£ =0,
21 — 2ol =n =t —ty <t,,

from ¢y = 0 and (23). Suppose that (25) hold for & = 0,1,...,¢ — 1.
Then,

k—1 k—1
lzx — zo]| < Z lxizr — x4 < Z(t"“ —t;) ==ty < t,.
=0 =0

This implies x4 € S(zg,1,). To show | 26), we use Theorem 4.1,

k
3
1Bk — Jillr < |1 Bo = Jollr + 57’2 lz: —ricalls
=1

for all %, and

5 2
—vt, + 26 < =3,
27 + 20 < 3k

Now, we can proceed as follows:

| By ' (Bx — By)|| r
< 1By NI e(IBx = Jellp + 176 = Jol[F + |0 — Boll)
3 k
< B(26 + 572 lz: —zicil] + 7llzx — 20l

=1

IA

k
. b
B(26 + Ev’guxiwi_lll)

IA

B(26 + gvtk)

(VAN

) 15}
6(26 + ;725*)

IN
Wit

Therefore,
1B P <

p_
1—2/3_3*3’
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by Lemma 2.3.2 in [9]. It remains to show (27). Since

BkT_lBk—l(xk ~Tr_1)+ B,ZL, fro1 =0

1s equivalent to
Bi_1(zk —zk_1) + fr—1 =0,

k1 — ]| < HB;l”Pka”

= 1By M el fx — fror — Bea(zx — zx_1)|
IBe el fe — oot — Jooi(zh — 25-1)
+ ’|(Jk~1 = By_1)(xy - Tr_1)||).

fA

By (26), Lemma 4.1.12 in [4], (27), and (22),

leker — k|
» 3 k—2
S35{§’H$k —zrqll + 57 ,Z; Zivr — @ifl + 0} ||lzp — zp |

Y , 3
S8H{Z(t — teot) + Sytacs + 6}tk — thy)
3 3
335{27(% —tr-1)+ 5ytk—1 + O}tk --tro1)

3 ,
SB,H{Zv(tk Fth-1) + EH(tk — th1)

:tk+] - fk

This shows that there is an z, € D such that hmy_, o 75 = z,.
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