• Title/Summary/Keyword: nonlinear ARCH

Search Result 104, Processing Time 0.027 seconds

Dynamic Instability of Arch Structures Considering Geometric Nonlinearity by Sinusoidal Harmonic Excitation (기하학적 비선형을 고려한 아치 구조물의 정현형 조화하중에 의한 동적 불안정 현상에 관한 연구)

  • 윤태영;김승덕
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.69-76
    • /
    • 2003
  • We investigate the fundamental mechanisms of the dynamic instability when the sinusoidal shaped arch structures subjected to sinusoidal harmonic excitation with pin-ends. In nonlinear dynamics, examining the characteristics of attractor on the phase plane and investigating the dynamic buckling process are very important thing for understanding why unstable phenomena are sensitively originated by various initial conditions. In this study, the direct and the indirect snap-buckling of shallow arches considering geometrical nonlinearity are investigated numerically and compared with the step excitation critical load.

  • PDF

A study on the bifurcation buckling for shallow sinusoidal Arches (얕은 정현형(正弦型) 아치의 분기좌굴에 관한 연구)

  • 김승덕;권택진;박지윤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.457-464
    • /
    • 1998
  • The equilibrium path of shallow sinusoidal arches supported by hinges at both ends is investigated. The displacement increment method is used to get the solution of the nonlinear differential equations for these structures and to plot the equilibrium paths by the results. Using the equilibrium paths, the relations between the position of buckling point and buckling type for the case of sinusoidal distributed loads are inferred. From the result that the buckling type changes according to the normalized rise of arch, it is also shown that the arch rise is the governing factor to stability regions

  • PDF

Dynamic Direct and Indirect Buckling Characteristics of Arch by Running Response Spectrum (연속 응답 스펙트럼 분석에 의한 아치의 동적 직접 및 간접 좌굴 특성)

  • Yun, Tae-Young;Kim, Seung-Deog
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.161-168
    • /
    • 2004
  • The dynamic instability of snapping phenomena has been studied by many researchers. Few papers deal with dynamic buckling under loads with periodic characteristics, and the behavior under periodic excitations is expected to be different from behavior under STEP excitations. We investigate the fundamental mechanisms of the dynamic instability when the sinusoidally shaped arch structures are subjected to sinusoidally distributed excitations with pin-ends. The mechanisms of dynamic indirect snapping of shallow arches are especially investigated under not only STEP function excitations but also under sinusoidal harmonic excitations, applied in the up-and-down direction. The dynamic nonlinear responses are obtained by the numerical integration of the geometrically nonlinear equation of motion, and examined by Fourier spectral analysis in order to get the frequency-dependent characteristics of the dynamic instability for various load levels.

  • PDF

In-Plane Buckling of Prime and Quadratic Parabolic Arches with Fixed Ends (양단고정 Prime과 Quadratic 포물선 아치의 면내좌굴에 관한 연구)

  • 이병구;김종만
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.3
    • /
    • pp.153-162
    • /
    • 1987
  • A numerical procedure for the analysis of slender arch buckling problems for uniform dead weight is presented in this paper. Such loading changes in the arch profile. The problem is nonlinear. The numerical procedure is limited to an inextensible analysis and to elastic behavior. Based upon a numerical integration technique developed by Newmark for straight beams, a large deflection bending analysis is combined with small deflection buckling routines to formulate the numerical procedure. The numerical procedure is composed of a combination of the numerical integration and successive approximations procedure. The results obtained in this study are as follows : 1.The critical loads obtained in this study coincide with the results by Austin so that the algorithm developed in this study is verified. 2.The numerical results are converged with good precision when the half arch is divided into 10 segments in both Prime and Quadratic section. 3.The critical loads are decreased as the ratios of rise versus span are increased. 4.The critical loads are increased as the moments of inertia at the ends are increased. 5.The critical loads of Prime section are larger than that of Quadratic section under the same profile conditions.

  • PDF

Finite element modeling of the influence of FRP techniques on the seismic behavior of historical arch stone bridge

  • Mahdikhani, Mahdi;Naderi, Melika;Zekavati, Mehdi
    • Computers and Concrete
    • /
    • v.18 no.1
    • /
    • pp.99-112
    • /
    • 2016
  • Since the preservation of monuments is very important to human societies, different methods are required to preserve historic structures. In this paper, 3D model of arch stone bridge at Pont Saint Martin, Aosta, Italy, was simulated by 1660 integrated separate stones using ABAQUS$^{(R)}$ software to investigate the seismic susceptibility of the bridge. The main objective of this research was to study a method of preservation of the historical stone bridge against possible earthquakes using FRP techniques. The nonlinear behavior model of materials used theory of plasticity based on Drucker-Prager yield criterion. Then, contact behavior between the block and mortar was modeled. Also, Seismosignal software was used to collect data related to 1976 Friuli Earthquake Italy, which constitutes a real seismic loading. The results show that, retrofitting of the arch stone bridge using FRP techniques decreased displacement of stones of spandrel walls, which prevents the collapse of stones.

Buckling Load of Single-layered Lattice Roof Structure Considering Asymmetric Snow Load (비대칭 적설하중 적용을 통한 단층 래티스 지붕 구조물의 좌굴하중 특성)

  • Hwang, Kyung-Ju;Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.3
    • /
    • pp.43-49
    • /
    • 2015
  • A single-layerd steel lattice roof, which has 50m span, was constructed. In order to figure out the realistic buckling load level, the structural analysis of this roof structure was performed especially by local snow load. Due to the characteristics of application of snow load, the load combinations of snow should be considered not only global area but also local part so that the critical buckling load could be observed as easy as possible. Geometrical imperfection was simulated to consider inaccurate shape of structure. And then nonlinear analysis were performed. Finally, this paper could investigate that the local snow load with geometrical imperfection decreased the level of buckling load significantly.

Nonlinear Elastic Optimal Design Using Genetic Algorithm (유전자 알고리즘을 이용한 비선형 탄성 최적설계)

  • Kim, Seung Eock;Ma, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • The optimal design method in cooperation with a nonlinear elastic analysis method was presented. The proposed nonlinear elastic method overcame the drawback of the conventional LRFD method this approximately accounts for the nonlinear effect caused by using the moment amplification factors of and. The genetic algorithm uses a procedure based on the Darwinian notions of the survival of the fittest, where selection, crossover, and mutation operators are used to look for high performance among the sections of the database. They satisfy constraint functions and give the lightest weight to the structure. The objective function was set to the total weight of the steel structure. The constraint functions were load-carrying capacities, serviceability, and ductility requirement. Case studies for a two-dimensional frame, a three-dimensional frame, and a three-dimensional steel arch bridge were likewise presented.

BIFURCATION THEORY FOR A CIRCULAR ARCH SUBJECT TO NORMAL PRESSURE

  • Bang, Keumseong;Go, JaeGwi
    • Korean Journal of Mathematics
    • /
    • v.14 no.1
    • /
    • pp.113-123
    • /
    • 2006
  • The arches may buckle in a symmetrical snap-through mode or in an asymmetry bifurcation mode if the load reaches a certain value. Each bifurcation curve develops as pressure increases. The governing equation is derived according to the bending theory. The balance of forces provides a nonlinear equilibrium equation. Bifurcation theory near trivial solution of the equation is developed, and the buckling pressures are investigated for various spring constants and opening angles.

  • PDF

Efficient Quasi-likelihood Estimation for Nonlinear Time Series Models and Its Application

  • Kim, Sahmyeong;Cha, Kyungyup;Lee, Sungduck
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.101-113
    • /
    • 2003
  • Quasi likelihood estimators defined by Wedderburn are derived for several nonlinear time series models. And also, the least squared estimator and Quasi-likelihood estimator are compared in sense of asymptotic relative efficiency at those models. Finally, we apply these estimations to a real data on exchanging rate and stock market prices.

The Effects of Composite Laminate Layups on Nonlinear Buckling Behavior Using a Degenerated Shell Element (퇴화 쉘 요소를 사용한 적층복합재의 증분형 비선형 좌굴 현상 및 적층 레이업 효과)

  • Cho, Hee-Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.50-60
    • /
    • 2016
  • Laminate composites have a number of excellent characteristics in aspects of strength, stiffness, bending, and buckling. Buckling and postbuckling analysis of laminate composites with layups of [90/0]2s, $[{\pm}45/90/0]s$, $[{\pm}45]2s$ has been carried using the Total Lagrangian nonlinear Newton-Raphson method. The formulation of a geometrically nonlinear composite shell element based on a nonlinear large deformation method is presented. The used element is an eight-node degenerated shell element with six degrees of freedom. Square, circular cylinder, and arch panel laminate geometries were analyzed to verify the effects of the layups on the buckling and postbuckling behavior. The results showed that the effects of laminate layups on bucking and postbuckling behavior and the present formulation showed very good agreement with existing references.