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BIFURCATION THEORY FOR A CIRCULAR ARCH
SUBJECT TO NORMAL PRESSURE

KEUMSEONG BANG*T AND JAEGWI GO

ABSTRACT. The arches may buckle in a symmetrical snap-through
mode or in an asymmetry bifurcation mode if the load reaches a
certain value. Each bifurcation curve develops as pressure increases.
The governing equation is derived according to the bending theory.
The balance of forces provides a nonlinear equilibrium equation. Bi-
furcation theory near trivial solution of the equation is developed,
and the buckling pressures are investigated for various spring con-
stants and opening angles.

1. Introduction

Assume that the equation
(1) F(X,p)=0

has the trivial solution X = 0 for all pressure p in an open neighbor-
hood of py € R. If the Frechet derivative Fx(0,pg) is invertible, then
the implicit function theorem guarantees the uniqueness of the trivial
solution [5, p310] and, when it is singular, bifurcations usually occur.
More precisely, let

F:U0,pp) CHxR' - K

be a C?-map on an open neighborhood U (0, py) of the point (0, py), where
H and K are real Banach spaces. The linearized operator F'x(0,po) :
H — K is assumed to be Fredholm and such that

1. N(Fx(0,p))= span {v}
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2. N(F§(0, po))= span {v°}
3. <v*, Fx(0,po)v >+# 0 (bifurcation condition).

In [5, p311] it is shown that, under the above assumptions, (0,pg) is a
bifurcation point of the equation (1).

The arches may buckle or deviate from its circular shape if the pres-
sure is larger than a certain critical pressure. The equilibrium equations
are derived from a small perturbation from the circular arch, and the
buckling pressure is the first eigenvalue of the linearized system. When
the pressure is further increased, two types of bifurcation curves, sym-
metric and anti-symmetric curves develop versus pressure. Such a buck-
ling of a circular arch has been studied by Timoshenko and Gere [4],
Tadjbakhsh, I. and Odeh [3], and Pi, Bradford, and Uy [2]. An elastic,
thin, and inextensible circular arch is considered in this paper. The arch
is under uniformly distributed normal pressure. Bifurcation curve is de-
veloped near trivial solution, and buckling pressures are investigated for
various spring constants and opening angles.

< -

Fig. 1. Normal load uniformly distributed around arch
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Fig. 2. An elemental length

2. Derivation of equation

The balance (Fig 2) of forces in the normal and tangential directions
provides the equations

(2) Tdg — dS — q,ds =0

(3) dT + Sdg = 0.
By the balance of local moment we obtain
(4) dM — Sds = 0.

Here T', S, and q; are tension, shear, and normal stress on the surface,
respectively, and g is the local angle of inclination, and s the arc length.
The Euler-Bernoulli law yields
dg

5 M =FEI-—=

o) =3
where ET is flexural rigidity. The combination of equations (2)~ (5)
gives the nonlinear normalized equation

(6> Gssssls — GsssGss — AnUss + gssgg = 0
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The arch length and normal stress are normalized by the variables s = %

and ¢, = q’iﬁg, where R is the radius of the circular arch.
The total angle change is resisted by an additional moment at the
bases with torsional spring constants. Thus the boundary conditions

are

(7a) 7 (g(~a) + a) — EI(gy(~a) — =) =0

(7h) 7 (9(a) — a) + FI(g(a) ~ £) =0,

where 7’ is the spring constant and 2a is the opening angle. The non-
dimensionless forms are

(8a) (9(0) +a) = 7(gs(0) — 2a) = 0
(8b) (9(1) —a) +7(gs(1) — 2a) =0,

where 7 = EI/7'R. The normalized Cartesian coordinates (z,y) are
related to g by

(9) Ts = COSg(S) Ys = sing(s).

3. Bifurcation theory near trivial solution

Using the transform g(s) = g(1 — s) and then dropping the tilde give
the followings:

gSSSSgS - gSSSgSS - pgss + gssgg = O

x5 = cos g(s) Ys = sing(s)




Bifurcation theory for a circular arch subject to normal pressure

Now, we let

(951 =g+2as—a

Ty =gs+ 2a

L3 = Yss

L4 = Ysss

x5 = (s) — 5-[sina — sin(a — 2as)]
(76 = y(s) + i[COSCL — cos(a — 2as)].

117

Then, the above boundary value problem can be converted into the

following form
(11)

(12)
where

(13)

(14)

FIX,p] = LX — f(X,p) =0

B[X] = BiX(0) + BoX(1) = 0,

T
X = (xly Lo, T3,T4,Ts, x6>

d
LIX] = =X
L2
T3
Tq
F(X,p) = | w324+ pas — x3(z0 — 20)°
To — 2a
cos g — cos(a — 2as)

sin g — sin(a — 2as)

By =

[l elolall S
o O O OO

SO OO o oo
SO OO oo
OO O~ OO
OO = O OO
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Let us define the domain Banach space to be
H={X € (C'0,1])®: B[X] = 0},

where B is the boundary operator defined by (12). Let the range space
be

K ={X € (C[0,1))%}.

Note that the equation (11) has the trivial solution X=0 for all p and

0 1 0 000
0 0 1 000
0 0 0 100
FX<Oap0):L_ 0 0 _,.YQ 00 0
—sinfa—2as) 0 0 0 0 0O
cos(a—2as) 0 0 0 0 O
, Do+8a® o
where v = — Hence F'x (0, po)v = 0 implies
a
(
V1,s = U2
V2,s = U3
V3,5 = U4
V4,s = _’7203
v5s = —sin(a — 2as)v;
| V6.« = cos(a — 2as)vy

which, in turn, yields
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(v = —% CoSYSs — %sin’ys — Ass + Ay
vy = % sin~ys — % cosys + As
vy = Ajcosvys + Agsinvys
vy = —A1ysinys + Ayycosys
sin(a — 2as)sinys  2acos(a — 2as) cosys
Vs = Al[ 2 2 - 2(~2 2 ]
(y? = 4a?) V(y* —4a?)
4 [sm(a —2as)cosys  2acos(a — 2as)sin ’ys]
(2 —de?) 2(3? — 4a?)
_Ag[s cos(a — 2as)  sin(a — 2as)] Y cos(a — 2as) yy
a 2 2a
A [cos(a — 2as)sinys = 2asin(a — 2as) cos 73]
Vg = —
T (P - 4a?) 72(7? — 4a?)
A [cos(a —2as)cosys  2asin(a — 2as)sin 75]
2 v(7? — 4a?) V2(~2 — 4a?)
ssin(a — 2as)  cos(a — 2as) sin(a — 2as)
\ — sl 2a B 4a? J= A 2a + s
The boundary conditions are satisfied if
(1 T
——2A1 + —2A2 - TAg + A4 =0
Y v . .
oS T sin sin T COS
All— 72” : 2NN 727 N (1+7) Ay + Ay =0
2a cosa sina sin a cos a
Af————— ] — A —A —A As; =0
! 72 (7? - 4a2)] 2[7(72 — 4a2)] 202 Mg T
2asina cos a cos a sina
A[-—————]+A A —A Ag =0
e ) T gy T AT A T
Al sin a sin y 2acosacosy] A sin a cos y 2acosasin7]
TP —de?) (2 —4a?) T (2 —da?) PP —da?)
+A3[_cosa n sina] B A4cosa LA =0
2a . 4a22 . 2a 94 s .
cos a sin 7y a sin a cos y COS @ COS Y a sin a sin vy
Aq[— A
T e v N e ) L e vy e e
sina  cosa sina
A A Ag = 0.
k+3[2a+4a2]+42a+6

Numerical investigations show that this system has one dimensional
null set at infinitely many isolated points py and it is known [1, p41] that
the null space of the adjoint problem has the same dimension. To make
sure that bifurcation happens at those points, it is enough to verify the



120 Keumseong Bang and JaeGwi Go

bifurcation condition 3. This will be done just for one case bellow, but it
appears that the bifurcation condition is always satisfied possibly except
in some special cases.

The adjoint F%(0,po) of Fx(0,pp) is given [1, p40] by

with the boundary condition
PZ(0)+QZ(0)=0

where

SO OO O
[l el eolNolall S
SO o+~ O O
OO O OO
SO oo oo
OO oo oo

O

I
coocon o
cooco l o
o~ ocooo
—o oo oo
coocoococo
coococoo

If F%(0,po)v* = 0, then we have

(Uis = sin(a — 2as)vi — cos(a — 2as)v§
U2,s = _/Uf
. = s + %
vz,s - _U§
v =10
\U%k,s =0,

and hence,
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2a

by

2a(y? — 4a?)

k1
4a?(~? — 4a?)

k k

=L cos(a — 2as) + 2—2 sin(a — 2as) + k3

4—12 sin(a — 2as) —

cos(a — 2as) +
3

sin(a — 2as) —
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a

ﬁ cos(a — 2as) — kss + ky

2 .
m SIH(CL — 20,8)
+ ksysinys — kgy cosys
ko

m COS(CL — QCLS)

k k
——gs + —3 + k5 cosys + kgsinys
g Y
ki
k2

In order that the boundary conditions of the adjoint problem are satis-
fied, k;’s, 1 = 1,2, ...,6, must satisfy the system:

-~

2aT cosa + sina

2aTsina — cosa

]{71[ 12 ]—i-k?g[ e ]+Tk}3—|—k‘4:0
2aT cosa + sina —2aTsIn a + cosa
ki [ 12 ] + kol o |+ (14 7)ks — ks =0
cos @ sin a 1
k|l——— — |+ k33— — kg =0
1[2a(72.— 1) PRl gy 3721 -
sin a —cosa
k|l——— |+ ko|—r—-+ ky— + ks =0
1[4a2(”y2 - 4a2)] + 2‘[4a2(72 - 4a2)] * L2 i
kl[%] + k@[%] + kg,y% + ks[ysiny] —ycosvks = 0
| B[y ) + kol rie=iany) — ks + kass + cos vk + sinyks = 0.

7A6

This system has nontrivial solution if and only if the system for Ay, ...
has nontrivial solution [1, p41].

Using Mathematica we will now verify bifurcation condition for angle
a = % and spring constant 7 = 0. Fx(0,pp) is non-invertible if v =

2
9.42478, in which case we can choose
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TABLE 1. Buckling pressures

a/T 0 .01 1 1 10 100 00

w/12 | 42.24 | 40.463 | 31.9219 | 22.4848 | 20.7366 | 20.5484 | 20.5273

/6 | 84.208 | 80.9883 | 63.4116 | 44.1913 | 40.6209 | 40.2364 | 40.1933

/4 | 125.695 | 120.859 | 94.0955 | 64.3533 | 58.8019 | 58.2037 | 58.1368

/3 | 166.634 | 160.18 | 123.734 | 82.2333 | 74.4316 | 73.5905 | 73.4964

5 /12| 207.212 | 199.156 | 152.341 | 94.1487 | 86.6682 | 85.5374 | 85.4108

/2 | 248.05 | 238.449 | 180.405 | 108.523 | 94.6812 | 93.1862 | 93.0188

(A, =1 by =1

Ay = 3312371257 ky = 165.9995

Az = 2.3116318 x 101! ks = —%

Ay = 0.0112579 ks = —12

A5 = —4451197.619 s = —0.000142386
| A = 0.0015886, kg = 0.0707641.

The bifurcation coeflicient is then
< v*, Fxp(0,po)v >= —1.29416 x 10"

Therefore, (0, po) with pg = 248.05021 is a bifurcation point in this case.
The buckling pressures for various values of the angle a and the spring
constants 7 are given in Table 1.
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