• Title/Summary/Keyword: nondestructive testing technology

Search Result 345, Processing Time 0.024 seconds

Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel

  • Kim, Jongbeom;Kim, Jin-Gyum;Kong, Byeongseo;Kim, Kyung-Mo;Jang, Changheui;Kang, Sung-Sik;Jhang, Kyung-Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.621-625
    • /
    • 2020
  • Cast austenitic stainless steel (CASS) is used for fabricating different components of the primary reactor coolant system of pressurized water reactors. However, the thermal embrittlement of CASS resulting from long-term operation causes structural safety problems. Ultrasonic testing for flaw detection has been used to assess the thermal embrittlement of CASS; however, the high scattering and attenuation of the ultrasonic wave propagating through CASS make it difficult to accurately quantify the flaw size. In this paper, we present a different approach for evaluating the thermal embrittlement of CASS by assessing changes in the material properties of CASS using a nonlinear ultrasonic technique, which is a potential nondestructive method. For the evaluation, we prepared CF8M specimens that were thermally aged under four different heating conditions. Nonlinear ultrasonic measurements were performed using a contact piezoelectric method to obtain the relative ultrasonic nonlinearity parameter, and a mini-sized tensile test was performed to investigate the correlation of the parameter with material properties. Experimental results showed that the ultrasonic nonlinearity parameter had a correlation with tensile properties such as the tensile strength and elongation. Consequently, we could confirm the applicability of the nonlinear ultrasonic technique to the evaluation of the thermal embrittlement of CASS.

Recent Trends in Composite Materials for Aircrafts (항공기용 복합소재의 개발 및 연구동향)

  • Kim, Deuk Ju;Oh, Dae Youn;Jeong, Moon Ki;Nam, Sang Yong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.252-258
    • /
    • 2016
  • The weight reduction and improved mechanical property are one of the prime factors to develop new materials for the aerospace industry. Composite materials have thus become the most attractive candidate for aircraft and other means of transportations due to their excellent property and light weight. In particular, fiber reinforced polymer (FRP) composite materials have been used as an alternative to metals in the aircraft. The composite materials have shown improved properties compared to those of metal and polymeric materials, which made the composites being used as the skin structure of the airplane. This review introduces different types of materials which have been developed from the FRP composite material and also one of the most advantageous ways to employ the composites in aircraft.

Root cause analysis of sticking in hydraulically actuated multi-disc friction clutch for ship propulsion (선박 추진용 유압작동식 다판 마찰클러치 고착현상 고장탐구)

  • Jeong, Sang-Hu;Kim, Jeong-Ryeol;Shin, Jae-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.330-336
    • /
    • 2017
  • This study performs a root cause analysis of the sticking that occurs in the hydraulically actuated wet type multi-disc friction clutch in a ship's diesel engine propulsion system that uses rubber elastic coupling. The fishbone method was used to study the sticking through dismantling investigation of the reduction gear and clutch, investigation of the components, and onboard system tests including nondestructive testing. The friction plate sticking is caused by the slip due to friction heat resulting from the leakage of control oil through cracks in the assembled hollow shaft. The friction plate cooling oil also leaks simultaneously through the crack, and partial sticking occurs due to the hot spots in the friction plates. These are caused by insufficient amount of cooling oil due to oil leakage.

Detection of tension force reduction in a post-tensioning tendon using pulsed-eddy-current measurement

  • Kim, Ji-Min;Lee, Jun;Sohn, Hoon
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.129-139
    • /
    • 2018
  • Post-tensioning (PT) tendons are commonly used for the assembly of modularized concrete members, and tension is applied to the tendons during construction to facilitate the integrated behavior of the members. However, the tension in a PT tendon decreases over time due to steel corrosion and concrete creep, and consequently, the stress on the anchor head that secures the PT tendon also diminishes. This study proposes an automatic detection system to identify tension reduction in a PT tendon using pulsed-eddy-current (PEC) measurement. An eddy-current sensor is installed on the surface of the steel anchor head. The sensor creates a pulsed excitation to the driving coil and measures the resulting PEC response using the pick-up coil. The basic premise is that the tension reduction of a PT tendon results in stress reduction on the anchor head surface and a change in the PEC intensity measured by the pick-up coil. Thus, PEC measurement is used to detect the reduction of the anchor head stress and consequently the reduction of the PT tendon force below a certain threshold value. The advantages of the proposed PEC-based tension-reduction-detection (PTRD) system are (1) a low-cost (< $ 30), low-power (< 2 Watts) sensor, (2) a short inspection time (< 10 seconds), (3) high reliability and (4) the potential for embedded sensing. A 3.3 m long full-scale monostrand PT tendon was used to evaluate the performance of the proposed PTRD system. The PT tendon was tensioned to 180 kN using a custom universal tensile machine, and the tension was decreased to 0 kN at 20 kN intervals. At each tension, the PEC responses were measured, and tension reduction was successfully detected.

ANALYSIS OF EFFECTIVE NUGGET SIZE BY INFRARED THERMOGRAPHY IN SPOT WELDMENT

  • Song, J.H.;Noh, H.G.;Akira, S.M.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.1
    • /
    • pp.55-59
    • /
    • 2004
  • Spot welding is a very important and useful technology in fabrication of thin sheet structures such as the parts in an automobile. However, because the fatigue strength of the spot welding point is considerably lower than that of the base metal due to stress concentration at the nugget edge, the nugget size must be estimated to evaluate a reasonable fatigue strength at a spot welded lap joint. So far, many investigators have experimentally studied the estimation of fatigue strengths of various spot weldments by using a destructive method. However, these destructive methods poses problems so testing of weldments by these methods are difficult. Furthermore, these methods cannot be applied to a real product, and are time and cost consuming, as well. Therefore, there has been a strong, continual demand for the development of a nondestructive method for estimating nugget size. In this study, the effective nugget size in spot weldments have been analyzed by using thermoelastic stress analysis adopting infrared thermography. Using the results of the temperature distribution obtained by analysis of the infared stress due to adiabatic heat expansion under sinusoidal wave stresses, the effective nugget size in spot welded specimens were estimated. To examine the evaluated effective nugget size in spot weldments, it was compared with the results of microstructure observation from a 5% Nital etching test.

Applications of SASW Method to Civil Engineering (토목 공학에서의 SASW 기법의 활용)

  • Song Myung-Jun;Jung Yun-Moon;Lee Young-Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.4
    • /
    • pp.174-179
    • /
    • 1999
  • Shear wave velocity, one of major elastic constants in the dynamic design for civil structures, is conventionally measured from downhole, crosshole or sonic logging tests. SASW (Spectral Analysis of Surface Waves) method, which overcomes the disadvantage of the in-hole tests, can evaluate subsurface stiffness nondestructively and nonintrusively through measuring surface waves on surface. In this paper, principles of the SASW method are briefly described and the results of various field tests, conducted to investigate the applicability of the method, are summarized. The SASW method was successfully applied in evaluating the effects of dynamic compaction at Inchon international airport site, applied in evaluating the integrity of the lining and sidewall at a testing tunnel located in Mabukri, and applied in detecting thickness of a concrete retaining wall. The results of field tests and the nondestructive and economical characteristics of the method show the promising future of the SASW method in civil engineering projects.

  • PDF

The image construction of the surface and subsurface defects using complex amplitude of the reflected ultrasonic signals from the solid (초음파 반사신호의 복소 진폭을 이용한 교체 내부 결함의 영상 구조)

  • Kim, Hyun;Lim, Ho;Kim, Ki-Yeoul;Koo, Kil-Mo
    • The Journal of Information Technology
    • /
    • v.4 no.2
    • /
    • pp.129-136
    • /
    • 2001
  • Most of the acoustic microscopes have been constructed acoustic image by simply measuring the amplitude of the reflected signal from the specimen. This method fails to produce images of good quality because the change in amplitude is not sensitive enough to specimen with fine variation. In this paper, we have been constructed the acoustic microscope system which has been able to measure simultaneously the amplitude and phase of the reflected ultrasonic signal. And also we have been constructed the amplitude and phase images for the 500 won coin as a sample and the alumium spacimen with internal round defect, and compared and analyzed these images. In expermental result, the phase image have shown better sensitive than the amplitude image and given better contrast for the micro height variation of specimen. It will be expected that the phase image can be used as an additional bit of information to improve ambiguituities in amplitude image on nondestructive testing for specimen with fine variation.

  • PDF

The Estimation of the Target Position and Size Using Multi-layer Neural Network in Electrical Impedance Tomography (전기 임피던스 단층촬영법에서 다층 신경회로망을 이용한 표적의 위치와 크기 추정)

  • Kim, Ji-Hoon;Kim, Chan-Yong;Cho, Tae-Hyun;Lee, In-Soo
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.35-41
    • /
    • 2018
  • Electrical impedance tomography (EIT) is a kind of nondestructive testing technique that obtains the internal resistivity distribution from the voltages measured at the electrodes located outside the area of interest. However, an image reconstruction problem in EIT has innate non-linearity and ill-posedness, so that it is difficult to obtain satisfactory reconstructed results. In general, a neural network can efficiently model the input and output relationships of a non-linear system. This paper proposes a method for estimating the position and size of a circular target using a multi-layer neural network. To verify the performance of the proposed method, neural network was trained and various computer simulations were performed and satisfactory performance was verified.

Assessment of Impact-echo Method for Cavity Detection in Dorsal Side of Sewer Pipe (하수관거 배면 공동 탐지를 위한 충격반향법의 적용성 평가)

  • Song, Seokmin;Kim, Hansup;Park, Duhee;Kang, Jaemo;Choi, Changho
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.5-14
    • /
    • 2016
  • The leakage of water under sewer pipelines is one of main sources of sinkholes in urban areas. We performed laboratory model tests to investigate the presence of cavities using impact-echo method, which is a nondestructive test method. To simulate a concrete sewer pipe, a thin concrete plate was built and placed over container filled with sand. The cavity was modeled as an extruded polystyrene foam box. Two sets of tests were performed, one over sand and the other on cavity. A new impact device was developed to apply a consistent high frequency impact load on the concrete plate, thereby increasing the reliability of the test procedure. The frequency and transient characteristics of the measured reflected waveforms were analyzed via fast Fourier transform and short time Fourier spectrum. It was shown that the shapes of Fourier spectra are very similar to one another, and therefore cannot be used to predict the presence of cavity. A new index, termed resonance duration, is defined to record the time of vibration exceeding a prescribed intensity. The results showed that the resonance duration is a more effective parameter for predicting the presence of a cavity. A value of the resonance period was proposed to estimate the presence of cavity. Further studies using various soil types and field tests are warranted to validate the proposed approach.

Influence of Ultrasonic Waves on the Stacking Orientation in Carbon Fiber/Epoxy Composite Laminates

  • Park, Je-Woong;Kim, Do-Jung;Hsu, David K.;Seo, Young-Hwan;Im, Kwang-Hee
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.8-13
    • /
    • 2008
  • In this study, an investigation of shear wave ultrasonic technique was carried out to detect stacking orientation error for CF/Epoxy quasi-isotropy composite laminates. The ultrasonic shear wave is particularly sensitive to ply orientation and layup sequence in tire CF/Epoxy composite laminates. In the manufacturing of composite laminates, it is important that layup errors be detected in samples. In this work, an effect was mack to develop shear wave techniques that can be applied to composite laminates. During testing, the mast significant problem is that the couplant conditions do not remain the same because of its changing viscosity. The design and use of a shear ware transducer would greatly alleviate the couplant problem. A pyramid of aluminum, with isosceles triangle (two 45o angles) sides, was made to generate shear waves, using two longitudinal transducers based on an ultrasonic-polarized mechanism. A signal splitter was connected to the pulser jack on a pulser/receiver and to the longitudinal transducers. The longitudinal transducers were mounted with mineral oil, and the shear transducer was mounted with burnt honey on the bottom as a receiver. The shear wave was generated at a maximum and a minimum based on the ultrasonic-polarized mechanism. Results show it is feasible to measure layup error using shear wave transducers on a stacking of prepregs in composites.