• Title/Summary/Keyword: non-real time process

Search Result 244, Processing Time 0.024 seconds

Development of a Spatial DSMS for Efficient Real-Time Processing of Spatial Sensor Data (공간 센서 데이타의 효율적인 실시간 처리를 위한공간 DSMS의 개발)

  • Kang, Hong-Koo;Park, Chi-Min;Hong, Dong-Suk;Han, Ki-Joon
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.1
    • /
    • pp.45-57
    • /
    • 2007
  • Recently, the development of sensor devices has accelerated researches on advanced technologies like Wireless Sensor Networks. Moreover, spatial sensors using GPS lead to the era of the Ubiquitous Computing Environment which generally uses spatial information and non-spatial information together. In this new era, a real-time processing system for spatial sensor data is essential. In this reason, new data processing systems called DSMS(Data Stream Management System) are being developed by many researchers. However, since most of them do not support geometry types and spatial functions to process spatial sensor data, they are not suitable for the Ubiquitous Computing Environment. For these reasons, in this paper, we designed and implemented a spatial DSMS by extending STREAM which stands for STanford stREam datA Manager, to solve these problems. We added geometry types and spatial functions to STREAM in order to process spatial sensor data efficiently. In addition, we implemented a Spatial Object Manager to manage shared spatial objects within the system. Especially, we implemented the Simple Features Specification for SQL of OGC for interoperability and applied algorithms in GEOS to our system.

  • PDF

Output Data Analysis of Simulation: A Review (시뮬레이션 출력 자료 분석에 관한 연구)

  • Chang, Byeong-Yun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.3
    • /
    • pp.11-16
    • /
    • 2012
  • Simulation is the imitation of the operation of a real-world process or system over time. It concerns the study of the operating characteristics of real systems. Typically, a simulation project consists of several steps such as data collection, coding, model verification, model validation, experimental design, output data analysis, and implementation. Among these steps of a simulation study this paper focus on statistical analysis methods of simulation output data. Specially, we explain how to develop confidence interval estimators for mean ${\mu}$ in terminating and non-terminating simulation cases. We, then, explore the estimation techniques for $f({\mu})$, where the function $f({\bullet})$ is a nonlinear that is continuously differentiable in a neighborhood of ${\mu}$ with $f'({\mu}){\neq}0$.

On Addressing Network Synchronization in Object Tracking with Multi-modal Sensors

  • Jung, Sang-Kil;Lee, Jin-Seok;Hong, Sang-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.4
    • /
    • pp.344-365
    • /
    • 2009
  • The performance of a tracking system is greatly increased if multiple types of sensors are combined to achieve the objective of the tracking instead of relying on single type of sensor. To conduct the multi-modal tracking, we have previously developed a multi-modal sensor-based tracking model where acoustic sensors mainly track the objects and visual sensors compensate the tracking errors [1]. In this paper, we find a network synchronization problem appearing in the developed tracking system. The problem is caused by the different location and traffic characteristics of multi-modal sensors and non-synchronized arrival of the captured sensor data at a processing server. To effectively deliver the sensor data, we propose a time-based packet aggregation algorithm where the acoustic sensor data are aggregated based on the sampling time and sent to the server. The delivered acoustic sensor data is then compensated by visual images to correct the tracking errors and such a compensation process improves the tracking accuracy in ideal case. However, in real situations, the tracking improvement from visual compensation can be severely degraded due to the aforementioned network synchronization problem, the impact of which is analyzed by simulations in this paper. To resolve the network synchronization problem, we differentiate the service level of sensor traffic based on Weight Round Robin (WRR) scheduling at the routers. The weighting factor allocated to each queue is calculated by a proposed Delay-based Weight Allocation (DWA) algorithm. From the simulations, we show the traffic differentiation model can mitigate the non-synchronization of sensor data. Finally, we analyze expected traffic behaviors of the tracking system in terms of acoustic sampling interval and visual image size.

An Integrated AHP-VIKOR Methodology for Facility Layout Design

  • Shokri, Hamidreza;Ashjari, Behzad;Saberi, Morteza;Yoon, Jin Hee
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.4
    • /
    • pp.389-405
    • /
    • 2013
  • A facility layout design (FLD) problem can be generally introduced as assignment of facilities (departments) to a site such that a set of criteria are satisfied or some objectives are minimized (maximized). Hence, it can be considered as a multi-criteria problem due to the presence of qualitative criteria such as maintenance or flexibility and quantitative criteria such as the total cost of handling material. The VIKOR method was developed to solve multiple criteria decision making problems with conflicting and non-commensurable (different units) criteria, assuming that compromising is acceptable for conflict resolution, the decision maker wants a solution that is the closest to the ideal, and the alternatives are evaluated according to all established criteria. This paper proposes a hierarchical analytic hierarchy process (AHP) and VIKOR approach to solve the FLD problem. A computer-aided layout-planning tool is adopted to generate the facility layout problems, as well as their quantitative data. The qualitative performance measures are weighted by AHP. VIKOR is then used to solve the FLD problem. Finally, the proposed integrated procedure is applied to three real-time examples.

Monitoring of fracture propagation in brittle materials using acoustic emission techniques-A review

  • Nejati, Hamid Reza;Nazerigivi, Amin;Imani, Mehrdad;Karrech, Ali
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • During the past decades, the application of acoustic emission techniques (AET) through the diagnosis and monitoring of the fracture process in materials has been attracting considerable attention. AET proved to be operative among the other non-destructive testing methods for various reasons including their practicality and cost-effectiveness. Concrete and rock structures often demand thorough and real-time assessment to predict and prevent their damage nucleation and evolution. This paper presents an overview of the work carried out on the use of AE as a monitoring technique to form a comprehensive insight into its potential application in brittle materials. Reported properties in this study are crack growth behavior, localization, damage evolution, dynamic character and structures monitoring. This literature review provides practicing engineers and researchers with the main AE procedures to follow when examining the possibility of failure in civil/resource structures that rely on brittle materials.

THERA: Two-level Hierarchical Hybrid Road-Aware Routing for Vehicular Networks

  • Abbas, Muhammad Tahir;SONG, Wang-Cheol
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3369-3385
    • /
    • 2019
  • There are various research challenges in vehicular ad hoc networks (VANETs) that need to be focused until an extensive deployment of it becomes conceivable. Design and development of a scalable routing algorithm for VANETs is one of the critical issue due to frequent path disruptions caused by the vehicle's mobility. This study aims to provide a novel road-aware routing protocol for vehicular networks named as Two-level hierarchical Hybrid Road-Aware (THERA) routing for vehicular ad hoc networks. The proposed protocol is designed explicitly for inter-vehicle communication. In THERA, roads are distributed into non-overlapping road segments to reduce the routing overhead. Unlike other protocols, discovery process does not flood the network with packet broadcasts. Instead, THERA uses the concept of Gateway Vehicles (GV) for the discovery process. In addition, a route between source and destination is flexible to changing topology, as THERA only requires road segment ID and destination ID for the communication. Furthermore, Road-Aware routing reduces the traffic congestion, bypasses the single point of failure, and facilitates the network management. Finally yet importantly, this paper also proposes a probabilistical model to estimate a path duration for each road segment using the highway mobility model. The flexibility of the proposed protocol is evaluated by performing extensive simulations in NS3. We have used SUMO simulator to generate real time vehicular traffic on the roads of Gangnam, South Korea. Comparative analysis of the results confirm that routing overhead for maintaining the network topology is smaller than few previously proposed routing algorithms.

Optimal EEG Locations for EEG Feature Extraction with Application to User's Intension using a Robust Neuro-Fuzzy System in BCI

  • Lee, Chang Young;Aliyu, Ibrahim;Lim, Chang Gyoon
    • Journal of Integrative Natural Science
    • /
    • v.11 no.4
    • /
    • pp.167-183
    • /
    • 2018
  • Electroencephalogram (EEG) recording provides a new way to support human-machine communication. It gives us an opportunity to analyze the neuro-dynamics of human cognition. Machine learning is a powerful for the EEG classification. In addition, machine learning can compensate for high variability of EEG when analyzing data in real time. However, the optimal EEG electrode location must be prioritized in order to extract the most relevant features from brain wave data. In this paper, we propose an intelligent system model for the extraction of EEG data by training the optimal electrode location of EEG in a specific problem. The proposed system is basically a fuzzy system and uses a neural network structurally. The fuzzy clustering method is used to determine the optimal number of fuzzy rules using the features extracted from the EEG data. The parameters and weight values found in the process of determining the number of rules determined here must be tuned for optimization in the learning process. Genetic algorithms are used to obtain optimized parameters. We present useful results by using optimal rule numbers and non - symmetric membership function using EEG data for four movements with the right arm through various experiments.

Development and Application of Teaching and Learning Materials for Gifted Students in Elementary School (초등수학영재를 위한 교수학습 자료 개발 및 적용)

  • Kim, Sung Joon
    • East Asian mathematical journal
    • /
    • v.37 no.4
    • /
    • pp.443-460
    • /
    • 2021
  • This study analyzes the characteristics of elementary math gifted classes through the development and application of teaching and learning materials. We used the guided reinvention methods including quasi-experiential perspectives. To this end, the applicability of Lakatos' quasi-empirical mathematical philosophy in elementary mathematics was examined, and the criteria for the development of teaching and learning materials for gifted students were presented, and then this study was conducted in this theoretical background. The subjects of the study were 21 elementary students at P University's Institute of Science and Gifted Education, and non-face-to-face real-time classes were conducted. Classes were divided into introduction, deployment1, deployment2, organization stages, and in each stage, small group cooperative learning was conducted based on group activities, and in this process, the characteristics of elementary mathematics gifted were analyzed. As a result of the study, elementary mathematics gifted students did not clearly present the essence of justification in the addition algorithm of fractions, but presented various interpretations of 'wrong' mathematics. They also showed their ingenuity in the process of spontaneously developing 'wrong' mathematics. On the other hand, by taking interest in new mathematics starting from 'wrong' mathematics, negative perceptions about it could be improved positively. It is expected that the development of teaching and learning materials dealing with various and original topics for the gifted students in elementary school will proceed through follow-up research.

Force monitoring of Galfan cables in a long-span cable-truss string-support system based on the magnetic flux method

  • Yuxin Zhang;Xiang Tian;Juwei Xia;Hexin Zhang
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.3
    • /
    • pp.261-281
    • /
    • 2023
  • Magnetic flux sensors are commonly used in monitoring the cable force, but the application of the sensors in large diameter non-closed Galfan cables, as those adopted in Yueqing Gymnasium which is located in Yueqing City, Zhejiang Province, China and is the largest span hybrid space structure in the world, is seldom done in engineering. Based on the construction of Yueqing Gymnasium, this paper studies the cable tension monitoring using the magnetic flux method across two stages, namely, the pre-calibration stage before the cable leaves the rigging factory and the field tension formation stage of the cable system. In the pre-calibration stage in the cable factory, a series of 1:1 full-scale comparative tests were carried out to study the feasibility and relability of this kind of monitoring method, and the influence on the monitoring results of charging and discharging voltage, sensor location, cable diameter and fitting method were also studied. Some meaningful conclusions were obtained. On this basis, the real-time cable tension monitoring system of the structure based on the magnetic flux method is established. During the construction process, the monitoring results of the cables are in good agreement with the data of the on-site pressure gauge.The work of this paper will provide a useful reference for cable force monitoring in the construction process of long-span spatial structures.

Robust Dynamic Projection Mapping onto Deforming Flexible Moving Surface-like Objects (유연한 동적 변형물체에 대한 견고한 다이내믹 프로젝션맵핑)

  • Kim, Hyo-Jung;Park, Jinho
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.897-906
    • /
    • 2017
  • Projection Mapping, also known as Spatial Augmented Reality(SAR) has attracted much attention recently and used for many division, which can augment physical objects with projected various virtual replications. However, conventional approaches towards projection mapping have faced some limitations. Target objects' geometric transformation property does not considered, and movements of flexible objects-like paper are hard to handle, such as folding and bending as natural interaction. Also, precise registration and tracking has been a cumbersome process in the past. While there have been many researches on Projection Mapping on static objects, dynamic projection mapping that can keep tracking of a moving flexible target and aligning the projection at interactive level is still a challenge. Therefore, this paper propose a new method using Unity3D and ARToolkit for high-speed robust tracking and dynamic projection mapping onto non-rigid deforming objects rapidly and interactively. The method consists of four stages, forming cubic bezier surface, process of rendering transformation values, multiple marker recognition and tracking, and webcam real time-lapse imaging. Users can fold, curve, bend and twist to make interaction. This method can achieve three high-quality results. First, the system can detect the strong deformation of objects. Second, it reduces the occlusion error which reduces the misalignment between the target object and the projected video. Lastly, the accuracy and the robustness of this method can make result values to be projected exactly onto the target object in real-time with high-speed and precise transformation tracking.