DOI QR코드

DOI QR Code

Monitoring of fracture propagation in brittle materials using acoustic emission techniques-A review

  • Nejati, Hamid Reza (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Nazerigivi, Amin (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Imani, Mehrdad (Rock Mechanics Division, School of Engineering, Tarbiat Modares University) ;
  • Karrech, Ali (School of Civil, Environmental and Mining Engineering, Faculty of Engineering, Computing and Mathematics, The University of Western Australia)
  • Received : 2018.11.09
  • Accepted : 2020.01.04
  • Published : 2020.01.25

Abstract

During the past decades, the application of acoustic emission techniques (AET) through the diagnosis and monitoring of the fracture process in materials has been attracting considerable attention. AET proved to be operative among the other non-destructive testing methods for various reasons including their practicality and cost-effectiveness. Concrete and rock structures often demand thorough and real-time assessment to predict and prevent their damage nucleation and evolution. This paper presents an overview of the work carried out on the use of AE as a monitoring technique to form a comprehensive insight into its potential application in brittle materials. Reported properties in this study are crack growth behavior, localization, damage evolution, dynamic character and structures monitoring. This literature review provides practicing engineers and researchers with the main AE procedures to follow when examining the possibility of failure in civil/resource structures that rely on brittle materials.

Keywords

References

  1. Aggelis, D.G. (2011), "Classification of cracking mode in concrete by acoustic emission parameters", Mech. Res. Commun., 38(3), 153-157. https://doi.org/10.1016/j.mechrescom.2011.03.007.
  2. Aggelis, D.G., Soulioti, D.V., Sapouridis, N., Barkoula, N.M., Paipetis, A.S. and Matikas, T.E. (2011), "Acoustic emission characterization of the fracture process in fibre reinforced concrete", Constr. Build. Mater., 25(11), 4126-4131. https://doi.org/10.1016/j.conbuildmat.2011.04.049.
  3. Agioutantis Z, Kaklis K, Mavrigiannakis S, Verigakis M, Vallianatos F and Saltas V. (2016), "Potential of acoustic emissions from three point bending tests as rock failure precursors", Int. J. Min. Sci. Technol., 26(1), 155-160. https://doi.org/10.1016/j.ijmst.2015.11.024.
  4. ASTM International Committee E08 on Fatigue and Fracture. Subcommittee E08. 07 on Fracture Mechanics (2013), Standard Test Method for Linear-elastic Plane-strain Fracture Toughness KIc of Metallic Materials, ASTM International.
  5. Atkinson, C., Smelser, R.E. and Sanchez, J. (1982), "Combined mode fracture via the cracked Brazilian disk test", Int. J. Fract., 18(4), 279-291. https://doi.org/10.1007/BF00015688.
  6. Blake, W. (1972), "Rock-burst mechanics", Q. Colo. Sch. Mines, 67(1), USA.
  7. Blake, W. and Leighton, F. (1969), "Recent developments and applications of the microseismic method in deep mines", The 11th US Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, Jananuary.
  8. Bruhwiler, E. and Wittmann, F.H. (1990), "The wedge splitting test, a new method of performing stable fracture mechanics tests", Eng. Fract. Mech., 35(1-3), 117-125. https://doi.org/10.1016/0013-7944(90)90189-N.
  9. Carpinteri, A. and Lacidogna, G. (2003), "Damage diagnostic in concrete and masonry structures by acoustic emission technique", Facta Universitatis-Ser.: Mech. Autom. Control Robot., 3(13), 755-764.
  10. Carpinteri, A. and Shah, S. (2014), Fracture Mechanics Test Methods for Concrete, CRC Press.
  11. Carpinteri, A., Lacidogna, G. and Pugno, N. (2007), "Structural damage diagnosis and life-time assessment by acoustic emission monitoring", Eng. Fract., 74(1-2), 273-289. https://doi.org/10.1016/j.engfracmech.2006.01.036.
  12. Chakrabarti, B.K. and Benguigui, L.G. (1997), Statistical Physics of Fracture and Breakdown in Disordered Systems, Oxford University Press.
  13. Dzaye, E.D., De Schutter, G. and Aggelis, D.G. (2018), "Study on mechanical acoustic emission sources in fresh concrete", Arch. Civil Mech. Eng., 18(3), 742-754. https://doi.org/10.1016/j.acme.2017.12.004.
  14. Elaqra, H., Godin, N., Peix, G., R'Mili, M. and Fantozzi. G. (2007), "Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: effects of the sand/cement ratio", Cement Concrete Res., 37(5), 703-713. https://doi.org/10.1016/j.cemconres.2007.02.008.
  15. Fowell, R.J., Hudson, J.A., Xu, C. and Zhao, X. (1995), "Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens", Int. J. Rock Mech. Min. Sci. Geomech., 7(32), 322.
  16. Franklin, J.A., Zongqi, S., Atkinson, B.K., Meredith, P.C., Rummel, F., Mueller, W., Nishimatsu, Y., Takahahsi, H., Costin, L.S., Ingraffea, A.R. and Bobrov, G.F. (1988), "Suggested methods for determining the fracture toughness of rock", Int. J. Rock Mech. Min. Geomech., 25(2), 00487481.
  17. Ghazvinian, A., Nejati, H.R., Sarfarazi, V. and Hadei, M.R. (2013), "Mixed mode crack propagation in low brittle rock-like materials", Arab. J. Geosci., 6(11), 4435-4444. https://doi.org/10.1007/s12517-012-0681-8.
  18. Golaski, L., Gebski, P. and Ono, K. (2002), "Diagnostics of reinforced concrete bridges by acoustic emission", J. Acoust. Emission., 20, 83-89.
  19. Gregoire, D., Verdon, L., Lefort, V., Grassl, P., Saliba, J., Regoin, J.P., Loukili, A. and Pijaudier-Cabot, G. (2015), "Mesoscale analysis of failure in quasi-brittle materials: comparison between lattice model and acoustic emission data", Int. J. Numer. Anal. Meth. Geomech., 39(15), 1639-1664. https://doi.org/10.1002/nag.2363.
  20. Grosse, C.U. and Ohtsu, M. (2008), Acoustic Emission Testing, Springer Science & Business Media.
  21. Gutenberg B. (2013), Seismicity of the Earth and Associated Phenomena, Read Books Ltd.
  22. Hadigheh, S.A., Gravina, R.J. and Smith, S.T. (2017), "Effect of acid attack on FRP-to-concrete bonded interfaces", Constr. Build. Mater., 152, 285-303. https://doi.org/10.1016/j.conbuildmat.2017.06.140.
  23. Haidar, K., Pijaudier-Cabot, G., Dube, J.F. and Loukili, A. (2005), "Correlation between the internal length, the fracture process zone and size effect in model materials", Mater. Struct., 38(2), 201. https://doi.org/10.1007/BF02479345.
  24. Hall, S.A., De Sanctis, F. and Viggiani, G. (2006), "Monitoring fracture propagation in a soft rock (Neapolitan Tuff) using acoustic emissions and digital images", Pure Appl. Geophys., 163(10), 2171-2204. https://doi.org/10.1007/s00024-006-0117-z.
  25. Haneef, T.K., Kumari, K., Mukhopadhyay, C.K., Rao, B.P. and Jayakumar, T. (2013), "Influence of fly ash and curing on cracking behavior of concrete by acoustic emission technique", Constr. Build. Mater., 44, 342-350. https://doi.org/10.1016/j.conbuildmat.2013.03.041.
  26. Haneef, T.K., Mukhopadhyay, C.K., Rao, B.P. and Jayakumar, T. (2010), "Acoustic emissions generated during Luders band elongation of tempered medium carbon steel", Streng. Fract. Complex., 6(4), 149-159. https://doi.org/10.3233/SFC-2011-0113.
  27. Imani, M., Nejati, H.R. and Goshtasbi, K. (2017), "Dynamic response and failure mechanism of Brazilian disk specimens at high strain rate", Soil Dyn. Earthq. Eng., 100, 261-269. https://doi.org/10.1016/j.soildyn.2017.06.007.
  28. Irwin, G.R. (1957), "Analysis of stresses and strains near the end of a crack traversing a plate", J. Appl. Mech.
  29. JCMS-III B5706 (2003), Monitoring Mmethod for Active Cracks in Concrete by Acoustic Emission, Federation of Construction Materials Industries, Japan.
  30. Kaiser, J. (1950), "An investigation into the occurrence of noises in tensile tests, or a study of acoustic phenomena in tensile tests", PhD Thesis.
  31. Kawasaki, Y., Kitaura, M., Kobarai, T. and Ohtsu, M. (2011), "Corrosion damage in reinforced concrete identified by AE", Concrete Res. Lett., 2(3), 262-266.
  32. Kawasaki, Y., Okamoto, T. and Izuno, K. (2015), "Corrosion-induced cracks in concrete and hybrid non-destructive evaluation (NDE) for evaluation in rebar corrosion", Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete.
  33. Khodayar, A. and Nejati, H.R. (2018), "Effect of thermal-induced microcracks on the failure mechanism of rock specimens", Comput. Concrete, 22(1), 93-100. https://doi.org/10.12989/cac.2018.22.1.093.
  34. Koppel, S. and Grosse, C. (2000), "Advanced acoustic emission techniques for failure analysis in concrete", WCNDT Proceedings.
  35. Kumar, S. and Barai, S.V. (2011), Concrete Fracture Models and Applications, Springer Science & Business Media.
  36. Kurz, J.H., Finck, F., Grosse, C.U. and Reinhardt, H.W. (2006), "Stress drop and stress redistribution in concrete quantified over time by the b-value analysis", Struct. Hlth. Monit., 5(1), 69-81. https://doi.org/10.1177/1475921706057983.
  37. Kurz, J.H., Grosse, C.U. and Reinhardt, H.W. (2005), "Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete", Ultrasonic., 43(7), 538-546. https://doi.org/10.1016/j.ultras.2004.12.005.
  38. L'Hermite, R.G. (1960), "Volume changes of concrete", Proceedings of the 4th Int. Symposium on the Chemistry of Cement, 659.
  39. Lavrov, A. (2003), "The Kaiser effect in rocks: principles and stress estimation techniques", Int. J. Rock Mech. Min. Sci., 40(2), 151-171. https://doi.org/10.1016/S1365-1609(02)00138-7.
  40. Liang, Y., Cheng, Y., Zou, Q., Wang, W., Ma, Y. and Li, Q. (2017), "Response characteristics of coal subjected to hydraulic fracturing: An evaluation based on real-time monitoring of borehole strain and acoustic emission", J. Natur. Gas Sci. Eng., 38, 402-411. https://doi.org/10.1016/j.jngse.2017.01.001.
  41. Livitsanos, G., Shetty, N., Hundgen, D., Verstrynge, E., Wevers, M., Van Hemelrijck, D. and Aggelis, D.G. (2018), "Acoustic emission characteristics of fracture modes in masonry materials", Constr. Build. Mater., 162, 914-922. https://doi.org/10.1016/j.conbuildmat.2018.01.066.
  42. Loutas, T.H. and Kostopoulos, V. (2009), "Health monitoring of carbon/carbon, woven reinforced composites. Damage assessment by using advanced signal processing techniques. Part I: Acoustic emission monitoring and damage mechanisms evolution", Compos. Sci. Technol., 69(2), 265-272. https://doi.org/10.1016/j.compscitech.2008.07.020.
  43. Mihashi, H., Nomura, N. and Niiseki, S. (1991), "Influence of aggregate size on fracture process zone of concrete detected with three dimensional acoustic emission technique", Cement Concrete Res., 21(5), 737-744. https://doi.org/10.1016/0008-8846(91)90168-H.
  44. Mukhopadhyay, C.K., Rajkumar, K.V., Jayakumar, T. and Raj, B. (2010), "Study of tensile deformation behaviour of M250 grade maraging steel using acoustic emission", J. Mater. Sci., 45(5), 1371-1384. https://doi.org/10.1007/s10853-009-4095-2.
  45. Najigivi, A., Nazerigivi, A. and Nejati, H.R. (2017), "Contribution of steel fiber as reinforcement to the properties of cement-based concrete: a review", Comput. Concrete, 20(2), 155-164. https://doi.org/10.12989/cac.2017.20.2.155.
  46. Nazerigivi, A. and Najigivi, A. (2019), "Study on mechanical properties of ternary blended concrete containing two different sizes of nano-$SiO_2$", Compos. Part B: Eng., 167, 20-24. https://doi.org/10.1016/j.compositesb.2018.11.136.
  47. Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2018), "Effects of $SiO_2$ nanoparticles dispersion on concrete fracture toughness", Constr. Build. Mater., 171, 672-679. https://doi.org/10.1016/j.conbuildmat.2018.03.224.
  48. Nazerigivi, A., Nejati, H.R., Ghazvinian, A. and Najigivi, A. (2017), "Influence of nano-silica on the failure mechanism of concrete specimens", Comput. Concrete, 19(4), 429-434. https://doi.org/10.12989/cac.2017.19.4.429.
  49. Nejati, H.R. and Ghazvinian, A. (2014), "Brittleness effect on rock fatigue damage evolution", Rock Mech. Rock Eng., 47(5), 1839-1848. https://doi.org/10.1007/s00603-013-0486-4.
  50. Ohno, K. (2015), "Identification of the fracture process zone in concrete materials by acoustic emission", Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete.
  51. Ohtsu, M. (1998), "Basics of acoustic emission and applications to concrete engineering", J. Soc. Mater. Sci., 47(9), 131-140. https://doi.org/10.2472/jsms.47.9Appendix_131.
  52. Ohtsu, M. (2015), Acoustic Emission and Related Non-Destructive Evaluation Techniques in the Fracture Mechanics of Concrete: Fundamentals and Applications, Woodhead Publishing.
  53. Ohtsu, M., Mori, K. and Kawasaki, Y. (2011), "Corrosion process and mechanisms of corrosion-induced cracks in reinforced concrete identified by AE analysis", Strain, 47, 179-186. https://doi.org/10.1111/j.1475-1305.2010.00754.x.
  54. Raj, B. and Jayakumar, T. (1991), "Acoustic emission during tensile deformation and fracture in austenitic alloys", Acoustic Emission: Current Practice and Future Directions, ASTM International.
  55. Ranjith, P.G., Jasinge, D., Song, J.Y. and Choi, S.K. (2008), "A study of the effect of displacement rate and moisture content on the mechanical properties of concrete: use of acoustic emission", Mech. Mater., 40(6), 453-469. https://doi.org/10.1016/j.mechmat.2007.11.002.
  56. Recommendation, R.D. (1985), "Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams", Mater. Struct., 18(106), 285-290. https://doi.org/10.1007/BF02472917
  57. Reis, J.M., De Oliveira, R., Ferreira, A.J. and Marques, A.T. (2003), "A NDT assessment of fracture mechanics properties of fiber reinforced polymer concrete", Polym. Test., 22(4), 395-401. https://doi.org/10.1016/S0142-9418(02)00120-4.
  58. Ren, X., Chen, J.S., Li, J., Slawson, T.R. and Roth, M.J. (2011), "Micro-cracks informed damage models for brittle solids", Int. J. Solid. Struct., 48(10), 1560-1571. https://doi.org/10.1016/j.ijsolstr.2011.02.001.
  59. Robinson, G.S. (1965), "Methods of detecting the formation and propagation of microcracks in concrete", Proceedings of the Int. Conference on the Structure of Concrete and its Behavior under Load, Cement and Concrete Association, 131-145.
  60. Rusch, H. (1960), "Physical problems in the testing of concrete", Cement and Concrete Association.
  61. Sabri, M., Ghazvinian, A. and Nejati, H.R. (2016), "Effect of particle size heterogeneity on fracture toughness and failure mechanism of rocks", Int. J. Rock Mech. Min. Sci., 81, 79-85. https://doi.org/10.1016/j.ijrmms.2015.11.002.
  62. Sagar, R.V. and Prasad, B.R. (2012), "Damage limit states of reinforced concrete beams subjected to incremental cyclic loading using relaxation ratio analysis of AE parameters", Constr. Build. Mater., 35, 139-148. https://doi.org/10.1016/j.conbuildmat.2012.02.057.
  63. Sarhosis, V., Jaya, A.A. and Thomas, H.R. (2016), "Economic modelling for coal bed methane production and electricity generation from deep virgin coal seams", Energy, 107, 580-594. https://doi.org/10.1016/j.energy.2016.04.056.
  64. Sellers, E.J., Kataka, M.O. and Linzer, L.M. (2003), "Source parameters of acoustic emission events and scaling with mining-induced seismicity", J. Geophys. Res.: Solid Earth, 108(B9). https://doi.org/10.1029/2001JB000670.
  65. Shiotani, T., Ohtsu, M. and Ikeda, K. (2001), "Detection and evaluation of AE waves due to rock deformation", Constr. Build. Mater., 15(5-6), 235-246. https://doi.org/10.1016/S0950-0618(00)00073-8.
  66. Soulioti, D., Barkoula, N.M., Paipetis, A., Matikas, T.E., Shiotani, T. and Aggelis, D.G. (2009), "Acoustic emission behavior of steel fibre reinforced concrete under bending", Constr. Build. Mater., 23(12), 3532-3536. https://doi.org/10.1016/j.conbuildmat.2009.06.042.
  67. Suzuki, T., Shiotani, T. and Ohtsu, M. (2017), "Evaluation of cracking damage in freeze-thawed concrete using acoustic emission and X-ray CT image", Constr. Build. Mater., 136, 619-626. https://doi.org/10.1016/j.conbuildmat.2016.09.013.
  68. Szendi-Horvath, G. (1982), "On fracture toughness of coal", Aust. J. Coal Min. Technol., 2, 51-57.
  69. Watanabe, T., Nishibata, S., Hashimoto, C. and Ohtsu, M. (2007), "Compressive failure in concrete of recycled aggregate by acoustic emission", Constr. Build. Mater., 21(3), 470-476. https://doi.org/10.1016/j.conbuildmat.2006.04.002.
  70. Whittaker, B.N., Singh, R.N. and Sun, G. (1992), Rock Fracture Mechanics Principles, Design and Applications, Developments in Geotechnical Engineering, Elsevier Publishers, Netherlands.
  71. Wittmann, F.H. (1986), Fracture Toughness and Fracture Energy of Concrete, Elsevier.
  72. Wu, K., Chen, B. and Yao, W. (2001), "Study of the influence of aggregate size distribution on mechanical properties of concrete by acoustic emission technique", Cement Concrete Res., 31(6), 919-23. https://doi.org/10.1016/S0008-8846(01)00504-X.
  73. Zang, A., Christian Wagner, F., Stanchits, S., Dresen, G., Andresen, R. and Haidekker, M.A. (1998), "Source analysis of acoustic emissions in Aue granite cores under symmetric and asymmetric compressive loads", Geophys. J. Int., 135(3), 1113-1130. https://doi.org/10.1046/j.1365-246X.1998.00706.x.
  74. Zhang, P., Dai, X.B., Gao, J.X. and Wang, P. (2015), "Effect of nano-$SiO_2$ particles on fracture properties of concrete composite containing fly ash", Curr. Sci., 108(11), 2035-2043.
  75. Zhang, P., Gao, J.X., Dai, X.B., Zhang, T.H. and Wang, J. (2016), "Fracture behavior of fly ash concrete containing silica fume", Struct. Eng. Mech., 59(2), 261-275. https://doi.org/10.12989/sem.2016.59.2.261.
  76. Zhang, P., Liu, C.H., Li, Q.F. and Zhang, T.H. (2013), "Effect of polypropylene fiber on fracture properties of cement treated crushed rock", Compos. Part B: Eng., 55, 48-54. https://doi.org/10.1016/j.compositesb.2013.06.005.