• Title/Summary/Keyword: non-porous surface

Search Result 115, Processing Time 0.023 seconds

Application of ZVI/TiO2 towards Clean-up of the Contaminated Soil with Polychlorinated Biphenyls (ZVI/TIO2를 이용한 폴리염화비페닐로 오염된 토양 정화)

  • Jae Wook Park;Yun Jin Jo;Dong-Keun Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.118-125
    • /
    • 2023
  • Once a site is contaminated with polychlorinated biphenyls (PCBs), serious environmental and human health risks are inevitable. Therefore, innovative but economical in situ remediation technologies must be immediately applied to the contaminated site. Recently, nanoscale zero-valent iron (nano-ZVI) particles have successfully been applied for the dechlorination of various chlorinated organic compounds like TCE, PCE and DDT, and they are considered to be environmentally safe due to the high abundance of iron in the earth's crust. Nano-ZVIs are much more reactive than granular ones, but tend to agglomerate due to their high surface energy and magnetic properties. In order to prevent them from being agglomerated toward larger particles, TiO2 was used as a support to immobilize the nano-ZVI particles as much as possible. 10wt% ZVI/TiO2 was prepared by adding NaBH4 slowly into an FeSO4/TiO2 aqueous slurry. In spite of their non-uniformity in size, the nano-ZVI particles were quite successfully dispersed onto the exterior surface of a non-porous TiO2 powder. The ZVI/TiO2 was then employed to degrade Aroclor 1242, a kind of PCBs standard, in spiked soil, and its reactivity towards the degradation of Aroclor 1242 was investigated. The fabricated ZVI/TiO2 degraded Aroclor 1242 in soil quite effectively, but the creation of remaining dechlorinated compounds, possibly high molecular weight hydrocarbons, in the soil was unavoidable.

Development of a Pipe Network Fluid-Flow Modelling Technique for Porous Media based on Statistical Percolation Theory (통계적 확산이론에 기초한 다공질체의 유동관망 유동해석 기법 개발)

  • Shin, Hyu-Soung
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.447-455
    • /
    • 2013
  • A micro-mechanical pipe network model with the shape of a cube was developed to simulate the behavior of fluid flow through a porous medium. The fluid-flow mechanism through the cubic pipe network channels was defined mainly by introducing a well-known percolation theory (Stauffer and Aharony, 1994). A non-uniform flow generally appeared because all of the pipe diameters were allocated individually in a stochastic manner based on a given pore-size distribution curve and porosity. Fluid was supplied to one surface of the pipe network under a certain driving pressure head and allowed to percolate through the pipe networks. A percolation condition defined by capillary pressure with respect to each pipe diameter was applied first to all of the network pipes. That is, depending on pipe diameter, the fluid may or may not penetrate a specific pipe. Once pore pressures had reached equilibrium and steady-state flow had been attained throughout the network system, Darcy's law was used to compute the resultant permeability. This study investigated the sensitivity of network size to permeability calculations in order to find out the optimum network size which would be used for all the network modelling in this study. Mean pore size and pore size distribution curve obtained from field are used to define each of pipe sizes as being representative of actual oil sites. The calculated and measured permeabilities are in good agreement.

Hydrodynamic Characteristics of Self-expandable Graft Stents in Steady Flow (정상유동에서 자가팽창성 그래프트 스텐트의 수력학적 특성)

  • 이홍철;김철생;박복춘;박복춘
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • This experimental study is aimed at evaluating the hydrodynamic performance of newly designed self-expandable graft stents under steady flow condition. Two graft stents with different coating materials and a bare TiNi metallic stent for comparison test were used in the experiment. Pressure variation and velocity distribution at the upstream and downstream of the stents were measured at flow rates of 5, 10, and 15 l/min, respectively. Pressure loss due to insertion of the stent increased with increasing flow rate exponentially as expected. At a flow rate of 15 l/min, pressure loss of Polyure-thane(PU)-coated graft stent was 6 times higher than that of TiNi metallic stent, while the pressure loss of a porous Polytetrafluoroethylene(PTFE)-coated graft stent was comparable to a bare TiNi metallic stent. Velocity profiles of the porous PTFE-coated graft stent were similar to those of a bare TiNi metallic stent regardless of flow rate. Furthermore, the velocity profile of PU-coated graft stent revealed an asymmetrical and relatively low central velocity at a higher flow rate than 10 1/min, expecially, where the effects resulted in increases of wall shear stress and normal stress. The worse hydrodynamic behavior of PU-coated graft stent than the other two stents might be attributed to formation of folds due to poor flexibility of coated material when inserting the graft stent into the pipe with a more smaller size, which later gave rise non-symmetry of flow area, increase of surface roughness and jet flow via the crevice between the stent and cylinder wall.

Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) using Air Scouring (침지형 생물 반응기 공정에서 플럭스 향상을 위한 공기 세척 효과에 관한 연구)

  • Shin, Dong-Hwan;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.948-954
    • /
    • 2008
  • Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.

A Study on the Optimum Conditions for Preparation of Calcium hydrogenphosphate Dihydrate by Box-Wilson Experimental Design (Box-Wilson 실험계획에 의한 연마용 인산일수소칼슘의 최적 제조조건 추구 및 안정화)

  • Rhee, Gye-Ju;Kwak, Son-Hyuk;Suh, Sung-Su
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.221-232
    • /
    • 1996
  • An abrasive, calcium hydrogen phosphate dihydrate (DCPD), was synthesized in a Box-wilson experimental design by reactions between phosphoric acid and milk of lime, and calcium chloride and sodium phosphate solutions, and stabilized with TSPP and TMP. The optimum conditions for preparation of DCPD from phosphoric acid with milk of lime were such as; reaction temp.; $51.9^{\circ}C$, conc. of lime; 25.9%, conc. of phosphoric acd; 77.9%, drying temp.; $60.2^{\circ}C$ and final pH; 6.46. The physico-chemical and pharmaceutical properties of DCPD were showed as follows: glycerin absorption value(68 ml/100g), whiteness(99.5%), particle size(10.9 nm), pH(7.8), and set test(pass). XRD and SEM of DCPD indicated a monoclinic system crystallographically. $N_2$ adsorption isotherm curve by BET showed non porous type II form. The micromeritic parameters of DCPD showed that surface area was $3.27{\sim}4.6\;cm^{2}/g$ and pore volume, pore area and pore radius were negligible. The rheogram of the toothpaste containing DCPD showed pseudoplastic flow with yield value of 321, and thixotropic behavior forming hysteresis loop. These results meet the requirements as abrasive standard, and sythesized DCPD is expected as a good dental abrasive such as a high quality grade in practice.

  • PDF

Effects of Biodegradable Cephalexin Microspheres in Dry Cow Mastitis Therapy (젖소의 건유기 유방염 치료에 있어서 생분해 cephalexin microspheres의 효과)

  • Hwang, Cheol-Yang
    • Journal of Veterinary Clinics
    • /
    • v.19 no.2
    • /
    • pp.228-235
    • /
    • 2002
  • Mastitis is the most costly disease results in lost milk production, decreased milk quality, milk discard, early culling of cows, drug costs and labor costs in dairy cow. Until now, a antibiotic administration at the end of lactation, dry cow therapy has been known the most effective and widely used mastitis control method. However, dry cow therapy do not control a new infection in the late dry and prepartum period because dry cow products have only persistent activity in the early dry period. Therefore, this study was conducted to evaluate clinical effect of sustained released biodegradable cephalexin microsphere using PLGA in bovine mastitis control during dry period. PLGA has been approved as controlled drug release system because of non-toxic, non-tissue reactive and bioerodible characteristics. This study revealed that cephalexin microsphere had a spherical shape with characteristic porous structure on the surface. Also, in vitro drug release studies are clearly observed that the release rate of cephalexin from PLGA microsphere decrease during the first 21 days after initial burst and then increase again between 3 and 4 weeks showing pulsatile releasing pattern. On the other hand, as tried in field the new infection rate, cure rate and mean SCC after parturition in cephalexin microsphere infused group were significantly differenced as compared to the control group. Accordingly, a sustained release of cephalexin from a biodegradable microsphere could make dry cow therapy more efficiently by preventing a new infection and decreasing the number of existing infection of mammary gland during dry period.

Preparation and Characteristics of P(AN-co-MA) Membrane Imprinted with Lysozyme Molecules (라이소자임 분자각인 P(AN-co-MA) 막의 제조와 특성)

  • Min, Kyoung Won;Yoo, Anna;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.3
    • /
    • pp.219-227
    • /
    • 2021
  • Molecularly imprinted membrane (MIM) is a porous polymer membrane incorporating with the molecular recognizing sites. In this study, the supporting P(AN-co-MA) asymmetric membrane was prepared by nonsolvent induced phase separation (NIPS) method. And then, MIM with lysozyme template sites was prepared using the surface imprinting method on the P(AN-co-MA) asymmetric membrane introducing a photoactive iniferter and then photo-grafting. The P(AN-co-MA) asymmetric membrane was modified with 3-chloropropyltrimethoxysilane and dithiocarbamate as a photoactive iniferter. To prepare a lysozyme imprinted membrane, the modified P(AN-co-MA) membrane was copolymerized with acrylamide as a functional momomer, N,N'-methylene bisacrylamide as a crosslinker and lysozyme as a template in the UV irradiation environment. The lysozyme imprinted MIM was analyzed by using SEM, FT-IR and EDS measurements. Its results confirm that all the P(AN-co-MA) membranes have an asymmetric structure and the iniferter group is successfully introduced on the membrane surface. The process parameters were adjusted to obtain MIM having the excellent lysozyme adsorption. The maximum lysozyme adsorption capacity reaches at 2.7 mg/g, which is 13 times higher than that of the non imprinted membrane (NIM). The permselective membrane filtration experiments of ovalbumin to lysozyme show that the P(AN-co-MA) MIM preferentially bounds a greater amount of lysozyme.

Characteristics Evaluation of Hobun Pigments according to Shell Types and Calcination (패각의 종류 및 소성 여부에 따른 호분안료의 특성 평가)

  • Ju Hyun Park;Sun Myung Lee;Myoung Nam Kim;Jin Young Hong
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.899-909
    • /
    • 2023
  • In this study, the material scientific characteristics of Hobun pigments used as white inorganic pigment for traditional cultural heritage were identified according to the type of shell and calcination and evaluated the stability of the preservation environment. For the purpose of this, we collected 2 different types of Hobun pigments made by oyster and clam shell and its calcined products(at 1,150℃). Hobun pigments before calcined identified calcium carbonate such as calcite, aragonite but calcination derived changing main composition to portlandite and calcite. Results of FE-SEM showed characteristics microstructure for each shell but pigments after calcined observed porous structure. Porous granule highly caused oil adsorption according to increase specific surface area of pigments. In addition, the whiteness improved after calcined pigments compared to non-calcined pigments, and the color improvement rate of Hobun pigment (CS) which made of clam shell was higher. As a result of the accelerated weathering test, the Hobun pigment-colored specimen had a color difference value of less than 2 after the test, which was difficult to recognize with the naked eye. In particular, the color stability has improved as the color difference value of the Hobun pigment is smaller after calcined compared to before non-calcined pigment. However, it was confirmed that the stability of the painting layer was lower in the specimen after calcined pigment. For antifungal activity test, Aspergillus niger, Tyromyces palustris and Trametes versicolor were used as test fungi, and all pigments were found to have preventive and protective effects against fungi. Especially, the antifungal effect of the calcined pigment was excellent, which is due to the stronger basicity of the pigment.

Seismic Data Processing and Inversion for Characterization of CO2 Storage Prospect in Ulleung Basin, East Sea (동해 울릉분지 CO2 저장소 특성 분석을 위한 탄성파 자료처리 및 역산)

  • Lee, Ho Yong;Kim, Min Jun;Park, Myong-Ho
    • Economic and Environmental Geology
    • /
    • v.48 no.1
    • /
    • pp.25-39
    • /
    • 2015
  • $CO_2$ geological storage plays an important role in reduction of greenhouse gas emissions, but there is a lack of research for CCS demonstration. To achieve the goal of CCS, storing $CO_2$ safely and permanently in underground geological formations, it is essential to understand the characteristics of them, such as total storage capacity, stability, etc. and establish an injection strategy. We perform the impedance inversion for the seismic data acquired from the Ulleung Basin in 2012. To review the possibility of $CO_2$ storage, we also construct porosity models and extract attributes of the prospects from the seismic data. To improve the quality of seismic data, amplitude preserved processing methods, SWD(Shallow Water Demultiple), SRME(Surface Related Multiple Elimination) and Radon Demultiple, are applied. Three well log data are also analysed, and the log correlations of each well are 0.648, 0.574 and 0.342, respectively. All wells are used in building the low-frequency model to generate more robust initial model. Simultaneous pre-stack inversion is performed on all of the 2D profiles and inverted P-impedance, S-impedance and Vp/Vs ratio are generated from the inversion process. With the porosity profiles generated from the seismic inversion process, the porous and non-porous zones can be identified for the purpose of the $CO_2$ sequestration initiative. More detailed characterization of the geological storage and the simulation of $CO_2$ migration might be an essential for the CCS demonstration.

Preparation and Characterization of Small Intestine Submucosa Powder Impregnated Poly(L-lactide) Scaffolds: The Application for Tissue Engineered Bone and Cartilage

  • Khang, Gilson;Rhee, John M.;Shin, Philkyung;Kim, In Young;Lee, Bong;Lee, Sang Jin;Lee, Young Moo;Lee, Hai Bang;Lee, Ilwoo
    • Macromolecular Research
    • /
    • v.10 no.3
    • /
    • pp.158-167
    • /
    • 2002
  • In order to endow with new bioactive functionality from small intestine submucosa (SIS) powder as natural source to poly (L-lactide) (PLA) and poly (lactide-co-glycolide) (PLGA) synthetic biodegradable polymer, porous SIS/PLA and SIS/PLGA as natural/synthetic composite scaffolds were prepared by means of the solvent casting/salt leaching methods for the possibility of the application of tissue engineered bone and cartilage. A uniform distribution of good interconnected pores from the surface to core region was observed the pore size of 40~500 ${\mu}{\textrm}{m}$ independent with SIS amount using the solvent casting/salt leaching method. Porosities, specific pore areas as well as pore size distribution also were almost same. After the fabrication of SIS/PLA hybrid scaffolds, the wetting properties was greatly enhanced resulting in more uniform cell seeding and distribution. Five groups as PGA non-woven mesh without glutaraldehyde (GA) treatment, PLA scaffold without or with GA treatment, and SIS/PLA (Code No.3 ; 1 : 12 of salt content, (0.4 : 1 of SIS content, and 144 ${\mu}{\textrm}{m}$ of median pore size) without or with GA treatment were implanted into the back of nude mouse to observe the effect of SIS on the induction of cells proliferation by hematoxylin and eosin, and von Kossa staining for 8 weeks. It was observed that the effect of SIS/PLA scaffolds with GA treatment on bone induction are stronger than PLA scaffolds, that is to say, in the order of PLA/SIS scaffolds with GA treatment > PLA/SIS scaffolds without GA treatment > PGA nonwoven > PLA scaffolds only with GA treatment = PLA scaffolds only without GA treatment for the osteoinduction activity. The possible explanations are (1) many kinds of secreted, circulating, and extracellular matrix-bound growth factors from SIS to significantly affect critical processes of tissue development and differentiation, (2) the exposure of SIS to GA resulted in significantly calcification, and (3) peri-implant fibrosis due to covalent bonding between collagen molecule by crosslinking reaction. In conclusion, it seems that SIS plays an important role for bone induction in SIS/PLA scaffolds for the application of tissue engineering area.