In this paper, we propose a method for optimizing a multiple pronunciation dictionary used for modeling pronunciation variations of non-native speech. The proposed method removes some confusable pronunciation variants in the dictionary, resulting in a reduced dictionary size and less decoding time for automatic speech recognition (ASR). To this end, a confusability measure is first defined based on the Levenshtein distance between two different pronunciation variants. Then, the number of phonemes for each pronunciation variant is incorporated into the confusability measure to compensate for ASR errors due to words of a shorter length. We investigate the effect of the proposed method on ASR performance, where Korean is selected as the target language and Korean utterances spoken by Chinese native speakers are considered as non-native speech. It is shown from the experiments that an ASR system using the multiple pronunciation dictionary optimized by the proposed method can provide a relative average word error rate reduction of 6.25%, with 11.67% less ASR decoding time, as compared with that using a multiple pronunciation dictionary without the optimization.
This study explores whether Koreans exploit their native coda-neutralization process when recognizing words in Korean continuous speech. According to the phonological rules in Korean, coda-neutralization process must come before the liaison process, as long as the latter(i.e. liaison process) occurs between 'words', which results in liaison-consonants being coda-neutralized ones such as /b/, /d/, or /g/, rather than non-neutralized ones like /p/, /t/, /k/, /ʧ/, /ʤ/, or /s/. Consequently, if Korean listeners use their native coda-neutralization rules when processing speech input, word recognition will be hampered when non-neutralized consonants precede vowel-initial targets. Word-spotting and word-monitoring tasks were conducted in Experiment 1 and 2, respectively. In both experiments, listeners recognized words faster and more accurately when vowel-initial target words were preceded by coda-neutralized consonants than when preceded by coda non-neutralized ones. The results show that Korean listeners exploit the coda-neutralization process when processing their native spoken language.
This paper examines how L2 speech production varies according to learner's L2 proficiency level. L2 speech production variations are analyzed by quantitative measures at word and phone levels using Korean learners' English corpus. Word-level variations are analyzed using correctness to explain how speech realizations are different from the canonical forms, while accuracy is used for analysis at phone level to reflect phone insertions and deletions together with substitutions. The results show that speech production of learners with different L2 proficiency levels are considerably different in terms of performance and individual realizations at word and phone levels. These results confirm that speech production of non-native speakers varies according to their L2 proficiency levels, even though they share the same L1 background. Furthermore, they will contribute to improve non-native speech recognition performance of ASR-based English language educational system for Korean learners of English.
This paper presents an automatic proficiency assessment method for a non-native Korean read utterance using bidirectional long short-term memory (BLSTM)-based acoustic models (AMs) and speech data augmentation techniques. Specifically, the proposed method considers two scenarios, with and without prompted text. The proposed method with the prompted text performs (a) a speech feature extraction step, (b) a forced-alignment step using a native AM and non-native AM, and (c) a linear regression-based proficiency scoring step for the five proficiency scores. Meanwhile, the proposed method without the prompted text additionally performs Korean speech recognition and a subword un-segmentation for the missing text. The experimental results indicate that the proposed method with prompted text improves the performance for all scores when compared to a method employing conventional AMs. In addition, the proposed method without the prompted text has a fluency score performance comparable to that of the method with prompted text.
This paper presents the development of language tutoring systems for nonnative speakers by leveraging advanced end-to-end automatic speech recognition (ASR) and proficiency evaluation. Given the frequent errors in non-native speech, high-performance spontaneous speech recognition must be applied. Our systems accurately evaluate pronunciation and speaking fluency and provide feedback on errors by relying on precise transcriptions. End-to-end ASR is implemented and enhanced by using diverse non-native speaker speech data for model training. For performance enhancement, we combine semisupervised and transfer learning techniques using labeled and unlabeled speech data. Automatic proficiency evaluation is performed by a model trained to maximize the statistical correlation between the fluency score manually determined by a human expert and a calculated fluency score. We developed an English tutoring system for Korean elementary students called EBS AI Peng-Talk and a Korean tutoring system for foreigners called KSI Korean AI Tutor. Both systems were deployed by South Korean government agencies.
An automatic speech recognition system is one of the popular research problems. There are many research groups working in this field for different language including Japanese. Japanese vowel recognition is one of important parts in the Japanese speech recognition system. The vowel classification system with the Mamdani fuzzy inference system was developed in this research. We tested our system on the blind test data set collected from one male native Japanese speaker and four male non-native Japanese speakers. All subjects in the blind test data set were not the same subjects in the training data set. We found out that the classification rate from the training data set is 95.0 %. In the speaker-independent experiments, the classification rate from the native speaker is around 70.0 %, whereas that from the non-native speakers is around 80.5 %.
This study addresses the issue of whether Korean(L1)-English(L2) non-proficient bilinguals are affected by the native coda-neutralization process when recognizing words in English continuous speech. Korean phonological rules require that if liaison occurs between 'words', then coda-neutralization process must come before the liaison process, which results in liaison-consonants being coda-neutralized ones such as /b/, /d/, or /g/, rather than non-neutralized ones like /p/, /t/, /k/, /$t{\int}$/, /$d_{\Im}$/, or /s/. Consequently, if Korean listeners apply their native coda-neutralization rules to English speech input, word detection will be easier when coda-neutralized consonants precede target words than when non-neutralized ones do. Word-spotting and word-monitoring tasks were used in Experiment 1 and 2, respectively. In both experiments, listeners detected words faster and more accurately when vowel-initial target words were preceded by coda-neutralized consonants than when preceded by coda non-neutralized ones. The results show that Korean listeners exploit their native phonological process when processing English, irrespective of whether the native process is appropriate or not.
In this paper, we present an English pronunciation correction system for Korean speakers and show some of experimental results on it. The aim of the system is to detect mispronounced phonemes in spoken words and to give appropriate correction comments to users. There are several English pronunciation correction systems adopting speech recognition technology, however, most of them use conventional speech recognition engines. From this reason, they could not give phoneme based correction comments to users. In our system, we build two kinds of phoneme models: standard native speaker models and Korean's error models. We also design recognition network based on phonemes to detect Koreans' common mispronunciations. We get 90% detection rate in insertion/deletion/replacement of phonemes, but we cannot get high detection rate in diphthong split and accents.
The current study investigated the role of acoustic correlates of domain-initial strengthening in lexical segmentation of a non-native language. In a series of cross-modal identity-priming experiments, native Korean listeners heard English auditory stimuli and made lexical decision to visual targets (i.e., written words). The auditory stimuli contained critical two word sequences which created temporal lexical ambiguity (e.g., 'mill#company', with the competitor 'milk'). There was either an IP boundary or a word boundary between the two words in the critical sequences. The initial CV of the second word (e.g., [$k_{\Lambda}$] in 'company') was spliced from another token of the sequence in IP- or Wd-initial positions. The prime words were postboundary words (e.g., company) in Experiment 1, and preboundary words (e.g., mill) in Experiment 2. In both experiments, Korean listeners showed priming effects only in IP contexts, indicating that they can make use of IP boundary cues of English in lexical segmentation of English. The acoustic correlates of domain-initial strengthening were also exploited by Korean listeners, but significant effects were found only for the segmentation of postboundary words. The results therefore indicate that L2 listeners can make use of prosodically driven phonetic detail in lexical segmentation of L2, as long as the direction of those cues are similar in their L1 and L2. The exact use of the cues by Korean listeners was, however, different from that found with native English listeners in Cho, McQueen, and Cox (2007). The differential use of the prosodically driven phonetic cues by the native and non-native listeners are thus discussed.
최근 4차 산업혁명은 주요 선진국을 중심으로 세계의 국가들의 관심을 갖는 분야가 되고 있다. 4차 산업혁명 기술의 핵심기술인 인공지능기술은 다양한 분야에 융합하는 형태로 발전하고 있으며, 에듀테크 분야에도 많은 영향을 미치고 있으며 교육을 혁신적으로 변화하기 위해 많은 관심과 노력을 하고 있다. 본 논문은 DTW 음성인식 알고리즘을 이용하여 실험환경을 구축하고 다양한 원어민 데이터와 비원어민 데이터를 딥러닝 학습하고, CNN 알고리즘과의 비교를 통해 영어 발음의 유사도를 측정하여 비원어민이 원어민과 유사한 발음으로 교정할 수 있도록 연구한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.