• Title/Summary/Keyword: non-linear regression

Search Result 625, Processing Time 0.025 seconds

Analysis on the Relationship of Soil Parameters of Marine Clay (해성점토의 토질정수 상관성 분석)

  • Heo, Yol;Yun, Seokhyun;Jung, Keunchae;Oh, Seungtak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.4
    • /
    • pp.37-45
    • /
    • 2008
  • Normally consolidated and slightly overconsolidated soft clay layer is widely distributed in the south coast of Korea. To ensure the efficient and economical construction design of any structure to be built on this soft soil, exhaustive studies are required related to geotechnical engineering properties. In this study, the relationship of the physical properties of southern marine clay in the Korea Peninsula were examined, including natural water content, specific gravity, total unit weight, initial void ratio, liquid limit, plastic limit, and physical properties of activity and soil parameters. For the parameter relationship analysis, the latest relatively reliable data on the large harbor construction work were used, optimum values were deducted with linear regression and non-linear regression between soil parameters, water content or initial void ratio appears to be very large. Moreover, in the linear and involution pattern regression, equal coefficient of determination appeared. The relationship of the different parameters was shown to be excellent in the non-linear regression of involution equation and exponential equation pattern compared with the findings of linear regression analysis.

  • PDF

A Study on the Weight Estimation Model of Floating Offshore Structures using the Non-linear Regression Analysis (비선형 회귀 분석을 이용한 부유식 해양 구조물의 중량 추정 모델 연구)

  • Seo, Seong-Ho;Roh, Myung-Il;Shin, Hyunkyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.530-538
    • /
    • 2014
  • The weight estimation of floating offshore structures such as FPSO, TLP, semi-Submersibles, Floating Offshore Wind Turbines etc. in the preliminary design, is one of important measures of both construction cost and basic performance. Through both literature investigation and internet search, the weight data of floating offshore structures such as FPSO and TLP was collected. In this study, the weight estimation model was suggested for FPSO. The weight estimation model using non-linear regression analysis was established by fixing independent variables based on this data and the multiple regression analysis was introduced into the weight estimation model. Its reliability was within 4% of error rate.

FUZZY REGRESSION MODEL WITH MONOTONIC RESPONSE FUNCTION

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.973-983
    • /
    • 2018
  • Fuzzy linear regression model has been widely studied with many successful applications but there have been only a few studies on the fuzzy regression model with monotonic response function as a generalization of the linear response function. In this paper, we propose the fuzzy regression model with the monotonic response function and the algorithm to construct the proposed model by using ${\alpha}-level$ set of fuzzy number and the resolution identity theorem. To estimate parameters of the proposed model, the least squares (LS) method and the least absolute deviation (LAD) method have been used in this paper. In addition, to evaluate the performance of the proposed model, two performance measures of goodness of fit are introduced. The numerical examples indicate that the fuzzy regression model with the monotonic response function is preferable to the fuzzy linear regression model when the fuzzy data represent the non-linear pattern.

Robustness of model averaging methods for the violation of standard linear regression assumptions

  • Lee, Yongsu;Song, Juwon
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.2
    • /
    • pp.189-204
    • /
    • 2021
  • In a regression analysis, a single best model is usually selected among several candidate models. However, it is often useful to combine several candidate models to achieve better performance, especially, in the prediction viewpoint. Model combining methods such as stacking and Bayesian model averaging (BMA) have been suggested from the perspective of averaging candidate models. When the candidate models include a true model, it is expected that BMA generally gives better performance than stacking. On the other hand, when candidate models do not include the true model, it is known that stacking outperforms BMA. Since stacking and BMA approaches have different properties, it is difficult to determine which method is more appropriate under other situations. In particular, it is not easy to find research papers that compare stacking and BMA when regression model assumptions are violated. Therefore, in the paper, we compare the performance among model averaging methods as well as a single best model in the linear regression analysis when standard linear regression assumptions are violated. Simulations were conducted to compare model averaging methods with the linear regression when data include outliers and data do not include them. We also compared them when data include errors from a non-normal distribution. The model averaging methods were applied to the water pollution data, which have a strong multicollinearity among variables. Simulation studies showed that the stacking method tends to give better performance than BMA or standard linear regression analysis (including the stepwise selection method) in the sense of risks (see (3.1)) or prediction error (see (3.2)) when typical linear regression assumptions are violated.

Modeling of High Density of Ozone in Seoul Area with Non-Linear Regression (비선형 회귀 모형을 이용한 서울지역 오존의 고농도 현상의 모형화)

  • Chung, Soo-Yeon;Cho, Ki-Heon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.865-877
    • /
    • 2009
  • While characterized initially as an urban-scale pollutant, ozone has increasingly been recognized as a regional and even global-scale phenomenon. The complexity of environmental data dynamics often requires models covering non-linearity. This study deals with modeling ozone with meteorology in Seoul area. The relationships are used to construct a nonlinear regression model relating ozone to meteorology. The model can be used to estimate that part of the trend in ozone levels that cannot be accounted for by trends in meteorology.

Estimates the Non-Stationary Probable Precipitation Using a Power Model (Power 모형을 이용한 비정상성 확률강수량 산정)

  • Kim, Gwangseob;Lee, Gichun;Kim, Beungkown
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.29-39
    • /
    • 2014
  • In this study, we performed a non-stationary frequency analysis using a power model and the model was applied for Seoul, Daegu, Daejeon, Mokpo sites in Korea to estimate the probable precipitation amount at the target years (2020, 2050, 2080). We used the annual maximum precipitation of 24 hours duration of precipitation using data from 1973 to 2009. We compared results to that of non-stationary analyses using the linear and logistic regression. The probable precipitation amounts using linear regression showed very large increase in the long term projection, while the logistic regression resulted in similar amounts for different target years because the logistic function converges before 2020. But the probable precipitation amount for the target years using a power model showed reasonable results suggesting that power model be able to reflect the increase of hydrologic extremes reasonably well.

Finite-Sample, Small-Dispersion Asymptotic Optimality of the Non-Linear Least Squares Estimator

  • So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.303-312
    • /
    • 1995
  • We consider the following type of general semi-parametric non-linear regression model : $y_i = f_i(\theta) + \epsilon_i, i=1, \cdots, n$ where ${f_i(\cdot)}$ represents the set of non-linear functions of the unknown parameter vector $\theta' = (\theta_1, \cdots, \theta_p)$ and ${\epsilon_i}$ represents the set of measurement errors with unknown distribution. Under suitable finite-sample, small-dispersion asymptotic framework, we derive a general lower bound for the asymptotic mean squared error (AMSE) matrix of the Gauss-consistent estimator of $\theta$. We then prove the fundamental result that the general non-linear least squares estimator (NLSE) is an optimal estimator within the class of all regular Gauss-consistent estimators irrespective of the type of the distribution of the measurement errors.

  • PDF

Relationship Between Physical Properties and Compression Index for Marine Clay (해성점토의 물리적 특성과 압축지수의 상관성)

  • 김동후;김기웅;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.371-378
    • /
    • 2003
  • The compression index of clay distributed in the west and south coast of the Korean Peninsula had been studied. Compression index was obtained from the conventional consolidation test, and was conducted accordingly to obtain the field virgin compression curve by means of Schmertmann's graphical correction. To examine a correlation closely between physical properties of soils($e_o$, LL, w) and compression index(Cc), linen. and non-linear regression analysis were employed based on the data collected from tests. The conclusions are as follows. The compression index obtained by means of Schmereann's graphical correction is about 1.16 times for the value of original oedometer test curve for U/D samples. Non-liner regression curve was preferable to establish a correlation equation rather than linear regression curve. All derived equations so far achieved have been summarized and given. However, linear equation is better for practical use so that part by part simplified linear equations were also suggested alternatively together with their own non-linear regression curve.

Pulse pile-up correction by auto-regression on linear operations (ARLO) method: A comparison with integration-based algorithms

  • Mohammad-Reza Mohammadian-Behbahani
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3904-3913
    • /
    • 2024
  • Radiation detection at high count rate suffers from pulse pile-up, where the counting data and energy information of the system are affected by the overlapping of the system output pulses. There exist various pile-up correction strategies to recover the true information of the pulses, among which pulse-tail extrapolation is a well-known method focused on in this study. Present work aims to use a mono-exponential model for extrapolating the pileup-distorted trailing edge of a pulse, to provide a reference line for calculating the true amplitude of its subsequent overlapping pulse. To this goal, the auto-regression on linear operations (ARLO) method is examined and compared with two integration-based methods (the Foss and the Matheson methods), as well as the non-linear least squares (NLS) method. Despite a higher sensitivity to noise, the ARLO method was able to provide a simple, non-iterative solution with a performance over 400 times faster than the NLS algorithm, according to the analysis of a high count rate set of experimental pulses from a NaI(Tl) detection system. Foss and Matheson methods also provided solutions reasonably faster than NLS (but not surpassing ARLO), performing exactly the same as each other with results very close to NLS, benefiting from their non-iterative nature.

Permutation Predictor Tests in Linear Regression

  • Ryu, Hye Min;Woo, Min Ah;Lee, Kyungjin;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.2
    • /
    • pp.147-155
    • /
    • 2013
  • To determine whether each coefficient is equal to zero or not, usual $t$-tests are a popular choice (among others) in linear regression to practitioners because all statistical packages provide the statistics and their corresponding $p$-values. Under smaller samples (especially with non-normal errors) the tests often fail to correctly detect statistical significance. We propose a permutation approach by adopting a sufficient dimension reduction methodology to overcome this deficit. Numerical studies confirm that the proposed method has potential advantages over the t-tests. In addition, data analysis is also presented.