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Abstract
In a regression analysis, a single best model is usually selected among several candidate models. However,

it is often useful to combine several candidate models to achieve better performance, especially, in the prediction
viewpoint. Model combining methods such as stacking and Bayesian model averaging (BMA) have been sug-
gested from the perspective of averaging candidate models. When the candidate models include a true model,
it is expected that BMA generally gives better performance than stacking. On the other hand, when candidate
models do not include the true model, it is known that stacking outperforms BMA. Since stacking and BMA
approaches have different properties, it is difficult to determine which method is more appropriate under other
situations. In particular, it is not easy to find research papers that compare stacking and BMA when regression
model assumptions are violated. Therefore, in the paper, we compare the performance among model averaging
methods as well as a single best model in the linear regression analysis when standard linear regression assump-
tions are violated. Simulations were conducted to compare model averaging methods with the linear regression
when data include outliers and data do not include them. We also compared them when data include errors from
a non-normal distribution. The model averaging methods were applied to the water pollution data, which have a
strong multicollinearity among variables. Simulation studies showed that the stacking method tends to give better
performance than BMA or standard linear regression analysis (including the stepwise selection method) in the
sense of risks (see (3.1)) or prediction error (see (3.2)) when typical linear regression assumptions are violated.

Keywords: model averaging, stacking regression, Bayesian model averaging, outliers, misspeci-
fied distribution

1. Introduction

When we conduct a regression analysis, it is common to choose one model which best explains the
response variable. On the other hand, there exist the cases when the response variable can be bet-
ter predicted by combining several plausible models. Both Staking and Bayesian model averaging
(hereafter, BMA) (Madigan and Raftery, 1994; Wolpert, 1992) use a concept of combining candi-
date models with a carefully chosen candidate model weights. In the stacking, weights are chosen
to minimize the sum of the squares of the distances between response variable values and a linear
combination of predicted values obtained by each candidate model. On the other hand, BMA takes
advantage of the posterior probability to combine candidate models, and the weights are selected
by the relative contribution of each model compared to other candidate models using approximated
Bayesian information criterion (BIC).
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Even though the stacking and BMA share the similarity in the viewpoint of fusing candidate
models to get a better model using model combining weights, each method is based on different types
of combining weights and, consequently, they may show dissimilar results in prediction or accuracy
of parameter-estimates under various circumstances. When candidate models include a true model,
BMA gives a better performance than stacking or, at least, provides performance as much as stacking
in perspective of the distance between the regression coefficient parameters and its estimates (‖β−β̂‖2,
the risk) (Clarke, 2003). In contrast, when candidate models do not include a true model, it is known
that the stacking outperforms BMA in prediction or estimating coefficients (Clarke, 2003).

The idea of combining several candidate models can be considered as “ensemble learnings” in
general, and many ensemble learning methods have been suggested under various frameworks. In
order to improve performance in classification problems, bagging (Breiman, 1996a) and random forest
method(Breiman, 2001) were introduced, especially for tree models, and Schapire (2003) proposed
boosting, which combines trees based on weighted samples. For the regression problems, stacking and
BMA are two representative methods. The stacking was originally proposed by Wolpert (1992) and
has been developed by Breiman (1996b). Hjort and Claeskens (2003) suggested a more sophisticated
version of the stacking method, say “Frequentist Model Averaging (FMA)”, by establishing a large-
sample likelihood framework to accurately describe properties of model averaging estimators. An
optimal weight choice for the FMA has been studied by Liang et al. (2011). For a sparse model
averaging, Ando and Li (2014) proposed a methodology of selecting model averaging weights under
a high-dimensional regression setting, and it was also extended to the generalized linear models case
(Ando et al., 2017). Recently, Zhang et al. (2020) studied asymptotic distributions of weights for
the model averaging when the number of parameter diverges. On the other hand, BMA approach
has been developed by Madigan and Raftery (1994) and Kass and Raftery (1995), and Hoeting et al.
(1999) provided elaborate reviews of BMA applications. A study of priors for BMA can be found
in Fernandez et al. (2001), and Eklund and Karlsson (2007) suggested a new approach of BMA
using predictive likelihoods. Note that most of studies have been focusing on either suggesting a new
framework of selecting weights under different circumstances or studying an (asymptotic) theoretical
properties of the estimator of weights. However, since there exist various versions of the model
averaging methods, it would be practically useful if we have a guideline of choosing the best model
averaging method according to a specific situation.

In the standard regression analysis, in which necessary assumptions should be satisfied, it is often
the case that we have a dataset which does not satisfy one (or many) of the assumptions. Detecting
such a violation sometimes is not straightforward even with rigorous regression diagnostics. Further-
more, it could be challenging to take an action to rectify such a violation if we do not have enough
information about the given dataset or the true model. Therefore, it is worthwhile to investigate a
way of providing a robust statistical model even though the standard linear regression assumptions
are violated. The purpose of the study is to compare the results of model averaging techniques with
traditional regression model when several model assumptions are not met. We conduct several sim-
ulation studies under different scenarios. Each scenario is designed to violate one of standard linear
regression assumptions, and we compare the model averaging results with one from traditional linear
regression model including the model selected by the stepwise method.

The remainder of the paper is organized as follows. In Section 2, we introduce the stacking
method and Bayesian model averaging, and discuss how to construct a list of candidate models for
the model averaging methods. In Section 3, several simulation studies are conducted to compare
performance of the stacking method and BMA as well as the result of the linear regression with full
model and a model constructed by the stepwise selection. The simulation deals with two scenarios: (1)
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fitting a regression model with a dataset containing many outliers, and (2) fitting a regression model
when a distributional assumption is violated. Here, we consider a dataset whose error terms come
from a heavy-tailed distribution or whose response variable actually follows a Poisson distribution.
In Section 4, we compare performance among aforementioned methods using the water pollution
dataset. Finally, Section 5 summarizes the findings and discusses a direction of further studies.

2. Background: Model averaging methods

2.1. Problem formulation

Suppose that we have p predictor variables X = (X1, . . . , Xp) to explain a response variable Y , and
define X ∈ Rn×p and y ∈ Rn×1 as corresponding collections of n data points, respectively. Denote
xi = (xi1, . . . , xip)> ∈ Rp×1 be the ith observation of X (or ith row of X), and, similarly, let yi ∈ R be
the ith datapoint of Y .

A standard linear regression model is expressed by,

Y = β0 + β1X1 + · · · + βpXp + ε, where ε ∼ N
(
0, σ2

)
, (2.1)

and let us consider this as a true model. Let f̂ (xi) be an estimator of the true model, f (X) = E[Y |X].
For the ith observation xi, that is,

f̂ (xi) := β̂0 + β̂1xi1 + · · · + β̂pxip, (2.2)

where β̂k, k = 0, 1, . . . , p, is an estimator of βk based on the datapoints X and y.
The model averaging combines several models instead of selecting a single model, and, conse-

quently, we need to take account of a set of properly selected candidate models. Suppose that we have
a list of candidate models,MMM, consisting of M candidate models,MMM = {M1, . . . ,MM}. In the stan-
dard linear regression model, various combinations of predictor variables can be considered as a list of
candidate models, that is,Mm ⊆ {X1, X2, . . . , Xp}, for m = 1, . . . ,M. For example,M1 = {X1, X2, X3}

represents a candidate (linear regression) model using X1, X2, X3 only. Given a candidate model,Mm,
define an estimator of f (x) as

f̂m(xi) = γ̂(m)
0 + γ̂(m)

1 xi1 + · · · + γ̂(m)
p xip, (2.3)

where for m = 1, . . .M and k = 1, . . . , p,

γ̂(m)
k =

β̂(m)
k , if k ∈ Mm,

0, otherwise,
γ̂(m)

0 =

β̂(m)
0 , ifMm includes an intercept,

0, otherwise.

β̂(m)
k , k = 1, . . . , p is the ordinary least square (OLS) estimator of the regression coefficient of Xk in
Mm, and β̂(m)

0 indicates the OLS estimator of the intercept in Mm. Therefore, we can construct a
matrix containing all the OLS estimators across M candidate models such that,

Γ̂ΓΓ =


γ̂(1)

1 . . . γ̂(M)
1

...
. . .

...

γ̂(1)
p . . . γ̂(M)

p

γ̂(1)
0 . . . γ̂(M)

0

 , Γ̂ΓΓ ∈ R(p+1)×M . (2.4)

Note that some of elements of mth column of Γ̂ΓΓ are zeros if corresponding predictors are not included
for the candidate modelMm.
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2.2. Stacking

Stacking method (or Stacked Generalization, Wolpert (1992)) is a model averaging technique from a
frequentist viewpoint (Friedman et al., 2001). When it comes to a standard linear regression model,
the stacking provides an improved prediction accuracy by forming a linear combination of different
candidate models (Breiman, 1996b). Specifically, in the stacking method, coefficients are chosen
to minimize the sum of squared of differences between values of the response variable and a linear
combination of predicted values from fitted regression model based on different candidate models.

Since the combining models based on the whole training dataset may cause a problem of overfit-
ting in the stacking, the leave-one-out method has been considered when obtaining predicted values.
Let f̂ −i

m (x) be a fitted model using predictors inMm based on the training data in which ith observation
is eliminated. Thus, a possible way to achieve a stacking weight can be formulated by an optimization
program

α̂αα = argminααα
n∑

i=1

yi −

M∑
m=1

αm f̂ −i
m (xi)

2

, (2.5)

where α̂αα = (α̂1, α̂2, . . . , α̂M)> (Friedman et al., 2001). Using α̂αα, we can construct a stacking estimator

f̂ st(xi) :=
M∑

m=1

α̂m f̂m(xi) (2.6)

based on a given M candidate models. That is, stacking estimators of coefficients and intercept term
in (2.2) can be expressed as

β̂st
0 := α̂1γ̂

(1)
0 + · · · + α̂M γ̂

(M)
0

β̂st
k := α̂1γ̂

(1)
k + · · · + α̂M γ̂

(M)
k , k = 1, . . . , p,

or simply, by using (2.4) and (2.5), where β̂ββ
st

= (β̂st
1 , . . . , β̂

st
p , β̂

st
0 )>,

β̂ββ
st

= Γ̂ΓΓ α̂αα.

Various determinations of the combining coefficients can be obtained by putting a constraint on
the weights. The five types of restriction are often considered to compare a performance of the stack-
ing method. The first model (S1) does not impose any constraint on the weight, and Clarke (2003)
suggests three types of restrictions to improve performance of the stacking method:

• Restriction Type 1 (S2):
∑M

m=1 αm = 1,

• Restriction Type 2 (S3): From S2, by replacing negative αm with zero and then re-normalizing so
the nonzero αm’s sum to one.

• Restriction Type 3 (S4):
∑

m αm = 1, αm ≥ 0 for all m = 1, . . . ,M.

Also, we consider an additional restriction type, which gives competitive performance empirically:

• Restriction Type 4 (S5): αm ≥ 0 for all m = 1, . . . ,M.

Note that S2 (or S4) is not obtained by normalizing S1 (or S5), because each restriction is considered
at the optimization process.
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2.3. Bayesian model averaging

To construct a parsimonious model, we usually select significant (explanatory) variables based on
the p-values. However, such a process may mislead the result by selecting inappropriate variables
against the intuition or disregarding model uncertainty (Raftery, 1995). BIC has been suggested as an
alternative way for model selection. BMA method based on the BIC suggests a reasonable framework
to compensate the model uncertainty.

In the linear regression model (2.1), we can express a posterior probability of βββ := (β0, β1, . . . , βp)>

given the data x as

P[βββ|x] =

M∑
m=1

P(βββ|Mm, x) · P(Mm|x). (2.7)

In the linear regression model, the BIC approximation plays an important role to approximate P(Mm|x)
in (2.7) (Raftery, 1995) as follows:

P[Mm|x] ≈
exp

{
− 1

2 · BIC′m
}

∑M
`=1 exp

{
− 1

2 · BIC′`
} , m = 1, . . . ,M, (2.8)

BIC′m = N · log
(
1 − R2

m

)
+ pm · log N, (2.9)

where R2
m is the coefficient of determination for the fitted linear regression model using the predictors

inMm, and pm indicates the number of predictors in the modelMm.
Under the given candidate models,M1, . . . ,MM , estimators of regression coefficients can be de-

rived by using their posterior means such that, for k = 1, . . . , p,

β̂BMA
k = E[βk |x]

=

M∑
m=1

E[βk |Mm, x] · P[Mm|x]. (2.10)

Practically, E[βk |Mm, x] in (2.10) under the candidate modelMm can be estimated by its maximum
likelihood estimator (MLE), β̃(m)

k , and combining it with the approximation from (2.8) gives

β̂BMA
k ≈

M∑
m=1

β̃(m)
k ·

exp
{
− 1

2 · BIC′m
}

∑M
`=1 exp

{
− 1

2 · BIC′`
} . (2.11)

2.4. Selecting candidate models

Selecting a list of candidate models is one of the essential part of the model averaging method because
the performance of the method heavily depends on the selected candidate models. For example, if a
list consists of implausible models to explain the data, the performance of the averaging method would
be even worse than the ordinary regression analysis. However, there exist few of studies to choose
ideal candidate models with a solid theoretical support.

Breiman (1996b) suggested choosing p candidate models for p dimensional data. Specifically,
suppose that we have a list of candidate modelsM = {M1, . . . ,MM}. A candidate modelMm has m
predictors for m = 1, . . . ,M (= p). The m predictors can be selected by comparing the R2 (coefficient
of determination) among all the possible linear regression model with m predictors. However, when p
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gets larger, there exist 2p possible candidate models to examine, which possibly results in an inefficient
process to select candidate models. The leaps-and-bound algorithm (Furnival and Wilson, 1974) can
be used to choose the best subset regression models more efficiently.

In Bayesian approach, a model selection method based on BIC, called Occam’s Window (Raftery,
1995), has been proposed. However, when p is still too large, it is not efficient to use the Occam’s
Window method. For this case, preprocessing with the leaps-and-bound algorithm can be a useful way
of selecting candidate models before applying the Occam’s Window to construct a list of candidate
models.

3. Simulation studies

Two possible scenarios violating standard linear regression assumptions are considered to verify per-
formance of the model averaging methods and compare them with the result based on the standard
linear regression analysis. The performance of each method has been evaluated by two criteria: (1)
Risk (Clarke, 2003) is defined by

Risk :=
∥∥∥ βββ − β̂ββ ∥∥∥ ; (3.1)

(2) Prediction Error (Breiman, 1996b) is calculated by

PE := ‖ ytest − ŷtest ‖ . (3.2)

Note that we generate a test dataset, (Xtest, ytest), independently, and (ŷtest)i is a fitted value, f̂ (xtest,i)
where xtest,i is the ith row (observation) of Xtest. The evaluation criteria were calculated for eight
different methods for all the simulations. For the stacking, we fit five methods with different types of
restrictions (Section 2.2), and denote them as S1, S2, S3, S4, and S5 respectively. Similarly, BMA is
considered as the another model averaging technique (Section 2.3). As the standard linear regression
analysis, we consider the full model (Full) and the model chosen from the stepwise selection method
(Step).

3.1. When a dataset contains outliers

If data contains some outliers, it may violate the standard assumptions in a linear regression model,
and, consequently, a result of analysis may lead to an unexpected conclusion for the prediction or
estimates of regression coefficients. The following simulation is designed to confirm whether the
model averaging method is useful to reduce the PE or Risk in this situation.

We set a true regression model as

Y = β0 + β1X1 + β2X2 + · · · + β20X20 + ε. (3.3)

Two hundred observations of X1, X2, . . . , X20 were generated from a standard normal distribution,
independently. The regression coefficients, β j, j = 1, 2, . . . , 20, and an intercept term β0 are set as:

β0 β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 β12 β13 β14 β15 β16 β17 β18 β19 β20
C1 : 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
C2 : 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
C3 : 1 0 0 0 0 16 0 0 0 0 16 0 0 0 0 16 0 0 0 0 0
C4 : 1 0 0 1 4 9 16 8 4 1 1 4 9 16 9 4 1 1 0 0 0

(3.4)
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Table 1: Averages of evaluation criteria over the 100 simulations when a dataset generated with errors from the
standard normal distribution (no outlier). The true model is given in (3.3), C1, . . . , C4 represent different sets of
coefficients (See (3.4)), and 100 observations are considered for each simulation.

Risks (No outlier)

Full Step Stacking BMAS1 S2 S3 S4 S5
C1 1.9402 0.9983 2.0682 2.0625 1.6434 0.8975 0.8955 0.6042

(s.e.) (0.3704) (0.4077) (0.3805) (0.3794) (0.3780) (0.3118) (0.3112) (0.2428)
C2 1.8690 1.6590 2.2220 2.2127 3.1281 1.6899 1.6882 1.5923

(s.e.) (0.3558) (0.3795) (0.4227) (0.4228) (1.4831) (0.3367) (0.3333) (0.3343)
C3 1.8836 0.9886 2.0187 2.0058 1.6240 0.8807 0.8802 0.5912

(s.e.) (0.3304) (0.4169) (0.3588) (0.3655) (0.3629) (0.2967) (0.2964) (0.2406)
C4 1.8098 1.5323 2.0761 2.0769 1.9518 1.5201 1.5191 1.4685

(s.e.) (0.2788) (0.2816) (0.3627) (0.3581) (0.5592) (0.2679) (0.2701) (0.2562)

Prediction errors (No outlier)

Full Step Stacking BMAS1 S2 S3 S4 S5
C1 89.65 85.90 90.98 90.83 88.18 83.74 83.71 82.21

(s.e.) (7.58) (8.34) (8.41) (8.41) (7.84) (7.57) (7.57) (7.29)
C2 90.47 89.65 93.98 93.87 108.97 89.75 89.72 88.92

(s.e.) (7.49) (7.23) (8.12) (8.22) (24.21) (7.31) (7.29) (7.15)
C3 90.29 86.87 91.16 91.01 88.97 84.80 84.79 83.45

(s.e.) (7.85) (7.84) (7.93) (8.03) (7.78) (6.98) (6.98) (6.57)
C4 88.25 87.51 90.85 90.83 90.67 87.10 87.10 86.66

(s.e.) (7.13) (7.29) (7.33) (7.25) (9.30) (7.00) (6.99) (7.01)

A set of coefficients in C1 corresponds to a model that contains three nonzero (significant) co-
efficients. C3 is similarly constructed as C1, while C3 is chosen to check the effect of a few large
coefficients in the model averaging methods. We also consider the coefficients which have fewer
number of zero coefficients. For example, C2 contains twenty coefficients that consist of sixteen ones
and four zeros. C4 indicates a similar model with C2, but it includes more various magnitudes of
coefficients. 100 datapoints (xi1, . . . , xi,100) are generated from the standard normal distribution, inde-
pendently. We also generate 100 error terms εi from the normal distribution, but, in order to consider
data with outliers, we add the five fold of the range of {εi} (that is, δ := 5 · (maxi εi − mini εi)) to the
randomly selected 20 error terms (20% of observations) considering their signs. In other words, if
εi, i = 1, . . . , 20, is positive, we add δ to the error term, and otherwise we subtract δ from the error
term. For the comparison purpose, we generate two types of datasets: (1) a dataset with error terms
from the standard normal distribution; (2) a dataset with modified errors term designed as outliers as
previously described. For both types of datasets, yi is calculated from (3.3), and a list of candidate
models are selected based on the method suggested by Breiman (1996b).

Table 1 and Table 2 show the average of evaluation metrics using datasets with no outliers and
with some outliers, respectively, over hundred repetitions of the simulation. The boldface numbers in
Table 1 and Table 2 indicate the best method with the minimum average risks and prediction errors
for each set of coefficients. Boxplots for each simulation result are also provided in Figure 1 and
Figure 2. When a dataset does not include outliers (Table 1), almost all the averages of risks for
model averaging methods (S4, S5, BMA) are smaller than the full model and the model based on
selected variables using stepwise selection. Particularly, BMA shows consistently better performance
for all the coefficients cases than any other method. When the data contain 20% outliers, BMA shows
better performance in C1 and C3. In contrast, in C2 and C4 cases (and even C1 for PEs), the stacking
method (S5, and some of S4 cases) outperforms not only Full and Step, but also BMA. This can also
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Table 2: Averages of evaluation criteria over the 100 simulations when a dataset designed to contain outliers
(20% of observations). The true model is given in (3.3), C1, . . . , C4 represent different sets of coefficients (See
(3.4)), and 100 observations are considered for each simulation.

Risks (with many Outliers)

Full Step Stacking BMAS1 S2 S3 S4 S5
C1 21.6586 10.8459 22.8962 23.3523 17.9020 10.0628 9.0657 7.2889

(s.e.) (4.5460) (4.4022) (5.0095) (5.1169) (4.3799) (3.1255) (3.1347) (2.0522)
C2 21.9146 21.4316 25.6144 25.9401 20.3284 17.6092 16.7498 17.8946

(s.e.) (4.2928) (3.1270) (5.6014) (5.6299) (3.8008) (2.6933) (2.7304) (1.8370)
C3 20.5704 9.5758 22.7116 22.7149 17.3891 8.8578 8.8182 6.0188

(s.e.) (3.9570) (4.0545) (4.9428) (4.8278) (3.6904) (3.1269) (3.1269) (2.6406)
C4 21.8171 19.8696 26.5458 26.3956 20.6527 18.7189 18.7085 18.7497

(s.e.) (4.3304) (4.3672) (5.3940) (5.4194) (4.3079) (3.9336) (3.9245) (4.0056)

Prediction errors (with many Outliers)

Full Step Stacking BMAS1 S2 S3 S4 S5
C1 902.23 814.33 916.09 925.53 865.52 777.34 745.55 747.25

(s.e.) (107.26) (110.46) (110.26) (113.47) (102.76) (97.31) (94.43) (94.84)
C2 899.82 875.05 963.67 969.65 870.73 823.95 803.73 822.21

(s.e.) (100.65) (91.67) (117.19) (119.90) (95.86) (86.85) (83.91) (80.74)
C3 873.92 789.53 906.88 907.11 845.81 745.83 744.99 709.13

(s.e.) (95.08) (104.53) (108.29) (107.76) (89.81) (88.32) (88.24) (88.71)
C4 898.91 888.89 976.64 975.89 884.48 870.04 869.72 882.37

(s.e.) (105.06) (107.31) (100.97) (100.77) (100.83) (100.46) (100.68) (96.75)
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Figure 1: Boxplots of PEs and Risks over the 100 simulations when a dataset does not include outliers.
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Figure 2: Boxplots of PEs and Risks over the 100 simulations when a dataset contains many outliers.

be verified through Figures 1 and 2.
The simulation result agrees with the findings in Breiman (1996b) in the sense that stacking shows

better performance when the candidate model list contains dissimilar models, which is more likely
for C2 and C4 cases because those coefficient sets contain many significant coefficients. On the other
hand, since C1 and C3 contain only three significant coefficients, there are few valid candidate models
to give a better performance, and the effect of combining significantly different models in stacking may
be minimal.

3.2. When the distributional assumption is violated

When an error term in a linear regression model follows a heavy-tailed distribution rather than a
normal distribution (e.g., t-distribution) or a skewed distribution such as a Poisson distribution, it
violates the assumption of normality of error terms in the standard linear regression analysis. These
error terms may have an effect on the prediction and estimation of parameters if an analysis based on
the normality assumption. In particular, if the error terms follow a distribution with heavier tails than
the normal distribution, the least squared method can be sensitive to a portion of data (Montgomery
et al., 2012). Similarly, for the Poisson response type data, although it would be better to consider an
alternative linear model such a generalized linear models (Agresti, 2013), it is possible that we conduct
a standard linear regression analysis even with such type of response variable if we don’t have enough
information of the dataset, and it usually leads to an unreliable results. Thus, in order to deal with
such a problem, especially in the prediction and estimation of the coefficients, we may consider the
model averaging methods as a technique of the robust regression and compare performance with one
from the standard linear regression model.
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Table 3: Averages of evaluation criteria over the 100 simulations when the response variable is calculated based
on the error term from a heavy-tailed distribution (t1). The true model is given in (3.5), T1 and T2 represent
different sets of coefficients (see (3.6)), and 100 observations are considered for each simulation.

Risks (with errors from t1)

Full Step Stacking BMAS1 S2 S3 S4 S5
T1 36.4001 20.1239 12.6665 25.1513 29.2460 17.9973 6.7869 18.9619

(s.e.) (73.8479) (30.2004) (10.6819) (35.7044) (57.6830) (28.2860) (3.9042) (30.5946)
T2 19.7780 11.7900 13.0817 18.1046 16.3247 10.1381 4.8940 10.5541

(s.e.) (32.8971) (18.5006) (19.4249) (27.4072) (24.4871) (12.9255) (2.7675) (13.8909)

Prediction errors (with errors from t1)

Full Step Stacking BMAS1 S2 S3 S4 S5
T1 2575.97 2310.91 1852.60 2372.81 2424.42 2237.97 1670.07 2243.53

(s.e.) (8783.36) (8642.56) (8519.11) (8629.16) (8712.53) (8627.20) (8517.92) (8620.53)
T2 1498.99 1387.34 1314.32 1500.97 1437.75 1331.72 1083.46 1341.52

(s.e.) (2895.10) (2842.59) (2806.94) (2873.10) (2852.92) (2807.36) (2747.52) (2810.30)

Suppose that a true linear regression model is expressed by

Y = β0 + β1X1 + β2X2 + . . . + β8X8 + ε. (3.5)

100 samples of each of (xi1, . . . , xi8) are obtained from a standard normal distribution, independently,
and two sets of coefficients are considered:

β0 β1 β2 β3 β4 β5 β6 β7 β8
T1 : 1 1 1 1 0 1 1 0 1
T2 : 1 1 1 0 0 1 0 0 1

(3.6)

T1 implies a model with many significant variables, and T2 indicates a model with a few signifi-
cant variables. The error term εi, i = 1, . . . , 100, is generated from a t-distribution with one degree of
freedom, and yi, i = 1, . . . , 100, is calculated based on the regression model (3.5). A list of candidate
models is also constructed based on the Breiman’s approach.

The result of simulation studies over 100 repetitions is given in Table 3, and corresponding box-
plots are shown in Figure 3. Note that, for the illustration purpose, we scaled the unit of each metric in
Figure 3 with log10(Evaluation Metric). According to Table 3, the stacking method under constraints
S5 gives the better performance in both risks and prediction errors than the model containing all vari-
ables (Full), the model with variables selected by the stepwise method (Step), and BMA. S4 also
provides good performance for Risks and PEs. In particular, S5 shows the significant outperformance
not only in the sense of the averages of metrics, but also in the sense of the stability.

To evaluate performance of the model averaging methods with Poisson response data, we conduct
a similar simulation by generating a dataset based on:

log(µi) = β0 + β1Xi1 + . . . + β8Xi8, i = 1, . . . , 100, (3.7)

where E[Yi] = µi and Yi ∼ Poisson(µi). Similar to the previous simulation, we use two coefficient sets
(3.6) and randomly generated 100 observations (xi1, . . . , xi8) from the standard normal distribution.
The response value yi, i = 1, . . . , 100, is a randomly generated based on a Poisson distribution with
mean eβ0+β1 xi1+···+β8 xi8 . A candidate model list is also chosen based on the Breiman’s approach.
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Figure 3: Boxplots of PEs and Risks over the 100 simulations when the response variable is calculated based on
the error term from a heavy-tailed distribution (t1). Note that evaluation metric units are modified with log10(x).

Table 4: Averages of evaluation criteria over the 100 simulations when the response values actually are
generated from a Poisson distribution. The true model is given in (3.7), T1 and T2 represent different sets of
coefficients (see (3.6)), and 100 observations are considered for each simulation.

Risks (Poisson response data)

Full Step Stacking BMAS1 S2 S3 S4 S5
T1 1.7310 1.7439 1.9883 2.0093 1.6865 1.6397 1.6161 1.6687

(s.e.) (0.2199) (0.1860) (0.2941) (0.2889) (0.1912) (0.1708) (0.1714) (0.1483)
T2 1.7361 1.5797 1.9994 2.0083 1.6871 1.5323 1.5094 1.5097

(s.e.) (0.2079) (0.1836) (0.2681) (0.2650) (0.1997) (0.1680) (0.1679) (0.1400)

Prediction errors (Poisson response data)

Full Step Stacking BMAS1 S2 S3 S4 S5
T1 88.94 89.10 92.59 92.81 88.68 88.43 88.07 88.52

(s.e.) (6.62) (7.00) (8.30) (8.25) (6.59) (6.94) (6.96) (7.05)
T2 88.85 88.14 91.95 92.08 88.55 87.57 87.22 87.24

(s.e.) (7.58) (7.27) (7.53) (7.53) (7.49) (7.17) (7.23) (7.12)

Table 4 shows the average of risks and prediction errors over 100 repetitions of the simulation. For
both risks and prediction errors, the S5 shows better result compared to Full, Step, and even BMA.
Since its performance is pretty similar to the previous simulation, we do not include corresponding
boxplots, here.

4. Application to a water pollution data

The effect of land uses on water quality had been given a considerable attention in the 1970s. Haith
(1976) collected data to investigate a relationship between land uses and water quality. The dataset
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Figure 4: Scatter plot matrix for the water pollution data.

consists of observations from twenty river basins in New York State. The response variable Y is the
mean concentration of total nitrogen of water samples taken at regular intervals during the spring,
summer, and fall months. X1 indicates the percentage of land area in agricultural use, X2 is the per-
centage of land area in forest, forest bushland, and plantations, X3 implies the percentage of land area
in residential use including urban, suburban and rural communities and strip developments with more
than four residences per 1,000ft, and X4 represents the percentage of land area in either commercial
or manufacturing use.

The scatterplot matrix in Figure 4 indicates that X1 and X2 seem to have a strong negative rela-
tionship, and there exist suspected outliers based on the scatterplot for (X1, X2) and (X1, X3). A linear
regression model

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε

is considered to conduct a statistical analysis between land uses and the water quality. The result of
the standard linear regression model analysis is shown in Table 5. Even though F-value, 9.15, for
testing H0 : β1 = β2 = β3 = β4 = 0 is very significant, all the t-values are small and none of the
coefficients are significant. This is a typical indication of existence of multicollinearity among the
variables. The Variance Inflation Factors (VIF) in Table 5 also supports the multicollinearity problem
among X1, X2 and X3 since those VIFs are larger than 10 (Chatterjee and Hadi, 2015).

According to the result in the preliminary analysis, it is likely that one of standard linear regression
assumptions is violated, i.e., strong evidence for the multicollinearity, and model averaging methods
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Table 5: Summary of standard linear regression analysis with the water pollution data
Variable Estimates Standard error t-value p-value VIF
Intercept 1.722 1.234 1.40 0.1832 -

X1 0.006 0.015 0.39 0.7046 13.28
X2 −0.013 0.014 −0.93 0.3667 16.73
X3 −0.007 0.034 −0.21 0.8337 12.68
X4 0.305 0.164 1.86 0.0823 4.14

R2 = 0.71; adj-R2 = 0.63; F-statistic = 9.15; p-value = 0.0006.

Table 6: Leave-one-out cross-validation estimator of prediction error (P̂ELOOCV) over the several methods using
the water pollution data

Full Step Stacking BMAS1 S2 S3 S4 S5
P̂ELOOCV 1.5119 1.6324 1.4900 1.4171 1.4186 1.3921 1.4112 1.6102

Table 7: Estimated coefficients for each method using the water pollution data

Full Step Stacking BMAS1 S2 S3 S4 S5
Intercept 1.7222 2.0962 0.9176 1.2627 1.8355 2.2266 2.1616 1.9967

X1 0.0058 - 0.0097 0.0069 0.0037 0.0005 0.0009 0.0020
X2 −0.0130 −0.0165 −0.0034 −0.0079 −0.0138 −0.0177 −0.0172 −0.0155
X3 −0.0072 - 0.0109 0.0051 0.0000 0.0000 0.0000 −0.0004
X4 0.3050 0.1877 0.8983 0.4758 0.2318 0.0693 0.0723 0.1825

can be an alternative way to improve the performance of analysis in the sense of prediction. Since
we cannot generate a new ‘test dataset’ with the real application data to compare the performance of
several fitting methods, Leave-one-out cross-validation estimator of prediction error (Friedman et al.,
2001) was used as an evaluation metric, which is defined by

P̂ELOOCV =
1
n

n∑
i=1

[
yi − f̂ −i(xi)

]2
, (4.1)

where f̂ −i indicates the fitted model excluding the ith observation. Table 6 compares P̂ELOOCV for
various methods. Note that we do not include the (estimated) standard error of the P̂ELOOCV in Table
6 because the P̂ELOOCV is a summary of prediction errors derived from different environments (leave-
one-out based estimators) and, consequently, comparing standard errors is not likely to provide any
useful information. Estimated coefficients for each method are also provided in Table 7.

In previous simulation studies, we observe that a model based on stepwise selection method (Step)
usually gives the better performance than one from the model based on the all variables (Full). How-
ever, according to Table 6, P̂ELOOCV with the water pollution data shows that Full outperforms Step.
On the other hand, considering all the methods (including model averaging methods), we see that all
the five types of stacking show better results than one based on Full, Step and BMA. Table 7 shows
estimated coefficients. It is known that the stepwise method with chosen variables, X2 and X4 here,
is useful to deal with multicollinearity problem, and, accordingly, the VIF value with the new model
(Y = β0 + β2X2 + β4X4) is much less than 10 (1.05392). Since we don’t have any knowledge of the
true coefficients for the real-world dataset, the risk can not be used to evaluate the performance of
each method. However, we are able to verify that S4 is also a useful method to select the variables so
that it alleviates the multicollinearity. Therefore, we can conclude that not only the stacking method
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is useful to obtain better and robust performance in the prediction than one based on traditional linear
regression model (including stepwise selection method) or BMA, but also it is helpful for choosing
proper variables to ease the multicollinearity problem.

5. Discussion

The model averaging method is useful in the sense of providing a robust performance compared to
a traditional linear regression analysis when some of standard regression model assumptions are vi-
olated. In this paper, two different scenarios were investigated in the paper to support the assertion.
First of all, in order to verify an effect of outliers, whose existence violates one of the standard as-
sumptions about errors in the linear regression, we compare results with a dataset having many outliers
and a dataset generated with no outliers. When data do not contain outliers, Bayesian model averag-
ing shows better performance consistently in both risks and prediction errors. On the contrary, when
data include many outliers and a true model has many significant predictors, the stacking (S4 and S5)
method provides better performance than Bayesian model averaging. Next, two cases are considered
to represent a scenario where the distributional assumption is violated in the linear regression model.
When error terms are generated from a heavy-tailed distribution (t-distribution with the degree of free-
dom 1), the stacking (S4 and S5) outperforms Bayesian model averaging. When a response variable
is from a skewed distribution like a Poisson distribution, the stacking (S5) gives better performance
in almost all cases. In the application to the water pollution data, in which some assumptions in the
standard linear regression model such as collinearity are violated, stacking (S4) provides better per-
formance than any other methods in the perspective of the leave-one-out cross-validation estimator of
prediction error.

Clarke (2003) argued that the stacking method shows robust performance when a true model is not
on the candidate model list. Similarly, in the linear regression model, if some assumptions are violated
in the model, the stacking seems to provide the robust result. On the other hand, when the true model
is in the candidate models, Bayesian model averaging gives better performance. In the same manner,
when the assumptions are satisfied, Bayesian model averaging always outperforms stacking. Our
simulation studies show that S4 (non-negative and sum-to-one weights) and S5 (non-negative weights)
provide better performances than other restriction types. Therefore, when some of standard linear
regression assumptions are violated – for example, when data contains outliers, or a distribution of
error terms does not follow normal distribution – S4 or S5 can be used to improve the performance in
the perspective of prediction errors and risks. In particular, for the distributional assumption violation,
since the stacking selects its combining weights according to differences between response values
and predicted values, it will be less sensitive to the data from non-normal distribution, and it seems
reasonable that the stacking method works better. However, BMA estimates each coefficient based on
the BIC, and it leads to relatively poor results when likelihood functions are not correctly specified.
However, the reason that S4 and S5 restrictions give better performances in the stacking method is not
yet supported theoretically, so it can be left as an open question.

However, admittedly, the generalized linear model (GLM) will be more ideal model for the Pois-
son response data in Section 3.1. According to another simulation (which is not included in this
paper), GLM (or GLM model constructed by the stepwise selection method, say, GLM-Step) always
provides the best performance in terms of risks. Interestingly, for prediction errors, S5 gives slightly
better performance than one from GLM (or GLM-Step). Thus, this can be another evidence that the
stacking method improves performance in prediction even in such unfavorable conditions. Toward
this end, we may consider model averaging methods designed for GLMs to improve performance, but
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it is out of scope of the purpose of this paper, so we omit them here. Also note that the performance
of model averaging methods could depend on selected candidate models. In this study, since we uti-
lized Breiman’s method to construct a list of candidate models, the number of candidate models is
the same as the number predictors. It is possible to include more candidate models, but our limited
experience indicates that including more number of candidate models did not necessarily guarantee
outperformance over the one based on the Breiman’s list. One of possible reasons is that the stacking
(especially for S4 and S5) and BMA method usually assigns no weights (or near zero weight) to unre-
liable models regardless of the number of candidate models. As long as the candidate models are well
chosen, model averaging would provide a satisfying result even with the small number of candidate
models. It would be worthy to conduct additional studies to evaluate the effects of various choices of
candidate models. Another possible issue in regression model may occur when the error terms can not
be assumed to be independent. When the independent assumption is violated, the relationship among
observations can be captured with various types of time series models. If there is clear seasonality, we
may use a time-series model directly, but sometimes it may not be obvious, and it has a critical effect
on the precision of the OLS estimation. However, the independence assumption is related to the rela-
tionship among observations. Different approach other than model averaging may work better since
model averaging methods achieve their improvement via combining various models. One possible
solution might be to consider not only various candidate models, but also a modified version of the
bagging (or boosting). It would be interesting to evaluate the effect of the independent assumption in
model averaging methods and propose a model averaging method when this assumption is violated.

Even though we consider only a “raw” risk here, it would be fairer to compare the performance of
estimating coefficients with its “standardized” version because some of methods give higher variabil-
ity of risks across the simulation studies than other methods. In other words, if we can calculate the
standard error of estimated coefficients based on the model averaging methods, we divide the raw risk
(which is one of the evaluation metrics we consider) by its standard error, and use it as better eval-
uation criterion. Therefore, it is worthwhile to obtain theoretically derived standard errors in order
to investigate performance of various model averaging methods more precisely. Another benefit of
having standard errors is that it would allow extending the current analysis with the model averaging
method to the hypothesis testing of the estimated coefficients (or weight) with corresponding stan-
dard errors. Since most of the estimators of coefficients based on the model averaging method have a
complicated form, we also leave this as a future research topic.
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