• Title/Summary/Keyword: non-linear equation

Search Result 585, Processing Time 0.028 seconds

A NEW APPROACH FOR NUMERICAL SOLUTION OF LINEAR AND NON-LINEAR SYSTEMS

  • ZEYBEK, HALIL;DOLAPCI, IHSAN TIMUCIN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.165-180
    • /
    • 2017
  • In this study, Taylor matrix algorithm is designed for the approximate solution of linear and non-linear differential equation systems. The algorithm is essentially based on the expansion of the functions in differential equation systems to Taylor series and substituting the matrix forms of these expansions into the given equation systems. Using the Mathematica program, the matrix equations are solved and the unknown Taylor coefficients are found approximately. The presented numerical approach is discussed on samples from various linear and non-linear differential equation systems as well as stiff systems. The computational data are then compared with those of some earlier numerical or exact results. As a result, this comparison demonstrates that the proposed method is accurate and reliable.

Comparison of linear and non-linear equation for the calibration of roxithromycin analysis using liquid chromatography/mass spectrometry

  • Lim, Jong-Hwan;Yun, Hyo-In
    • Korean Journal of Veterinary Research
    • /
    • v.50 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • Linear and non-linear regressions were used to derive the calibration function for the measurement of roxithromycin plasma concentration. Their results were compared with weighted least squares regression by usual weight factors. In this paper the performance of a non-linear calibration equation with the capacity to account empirically for the curvature, y = ax$^{b}$ + c (b $\neq$ 1) is compared with the commonly used linear equation, y = ax + b, as well as the quadratic equation, y = ax$^{2}$+ bx + c. In the calibration curve (range of 0.01 to 10 ${\mu}g/mL$) of roxithromycin, both heteroscedasticity and nonlinearity were present therefore linear least squares regression methods could result in large errors in the determination of roxithromycin concentration. By the non-linear and weighted least squares regression, the accuracy of the analytical method was improved at the lower end of the calibration curve. This study suggests that the non-linear calibration equation should be considered when a curve is required to be fitted to low dose calibration data which exhibit slight curvature.

Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column (비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가)

  • 주기호;정재호;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

AN ACCELERATING SCHEME OF CONVERGENCE TO SOLVE FUZZY NON-LINEAR EQUATIONS

  • Jun, Younbae
    • The Pure and Applied Mathematics
    • /
    • v.24 no.1
    • /
    • pp.45-51
    • /
    • 2017
  • In this paper, we propose an accelerating scheme of convergence of numerical solutions of fuzzy non-linear equations. Numerical experiments show that the new method has significant acceleration of convergence of solutions of fuzzy non-linear equation. Three-dimensional graphical representation of fuzzy solutions is also provided as a reference of visual convergence of the solution sequence.

ON ANALYTICAL SOLUTION OF NON LINEAR ROLL EQUATION OF SHIPS

  • Tata S. Rao;Shoji Kuniaki;Mita Shigeo;Minami Kiyokazu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.134-143
    • /
    • 2006
  • Out of all types of motions the critical motions leading to capsize is roll. The dynamic amplification in case of roll motion may be large for ships as roll natural frequency generally falls within the frequency range of wave energy spectrum typical used for estimation of motion spectrum. Roll motion is highly non-linear in nature. Den are various representations of non-linear damping and restoring available in literature. In this paper an uncoupled non-linear roll equations with three representation of damping and cubic restoring term is solved using a perturbation technique. Damping moment representations are linear plus quadratic velocity damping, angle dependant damping and linear plus cubic velocity dependant damping. Numerical value of linear damping coefficient is almost same for all types but non-linear damping is different. Linear and non-linear damping coefficients are obtained form free roll decay tests. External rolling moment is assumed as deterministic with sinusoidal form. Maximum roll amplitude of non-linear roll equation with various representations of damping is calculated using analytical procedure and compared with experimental results, which are obtained form forced tests in regular waves by varying frequency with three wave heights. Experiments indicate influence of non-linearity at resonance frequency. Both experiment and analytical results indicates increase in maximum roll amplitude with wave slope at resonance. Analytical results are compared with experiment results which indicate maximum roll amplitude analytically obtained with angle dependent and cubic velocity damping are equal and difference from experiments with these damping are less compared to non-linear equation with quadratic velocity damping.

  • PDF

Non-linear distributed parameter system estimation using two dimension Haar functions

  • Park Joon-Hoon;Sidhu T.S.
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.187-192
    • /
    • 2004
  • A method using two dimension Haar functions approximation for solving the problem of a partial differential equation and estimating the parameters of a non-linear distributed parameter system (DPS) is presented. The applications of orthogonal functions, including Haar functions, and their transforms have been given much attention in system control and communication engineering field since 1970's. The Haar functions set forms a complete set of orthogonal rectangular functions similar in several respects to the Walsh functions. The algorithm adopted in this paper is that of estimating the parameters of non-linear DPS by converting and transforming a partial differential equation into a simple algebraic equation. Two dimension Haar functions approximation method is introduced newly to represent and solve a partial differential equation. The proposed method is supported by numerical examples for demonstration the fast, convenient capabilities of the method.

Vortex Filament Equation and Non-linear Schrödinger Equation in S3

  • Zhang, Hongning;Wu, Faen
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.3
    • /
    • pp.381-392
    • /
    • 2007
  • In 1906, da Rios, a student of Leivi-Civita, wrote a master's thesis modeling the motion of a vortex in a viscous fluid by the motion of a curve propagating in $R^3$, in the direction of its binormal with a speed equal to its curvature. Much later, in 1971 Hasimoto showed the equivalence of this system with the non-linear Schr$\ddot{o}$dinger equation (NLS) $$q_t=i(q_{ss}+\frac{1}{2}{\mid}q{\mid}^2q$$. In this paper, we use the same idea as Terng used in her lecture notes but different technique to extend the above relation to the case of $R^3$, and obtained an analogous equation that $$q_t=i[q_{ss}+(\frac{1}{2}{\mid}q{\mid}^2+1)q]$$.

  • PDF

The Control of Flexible Beam using Nonlinear Compensator with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 보상기를 이용한 유연한 빔의 제어)

  • 권세현;이형기;최부귀
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.644-650
    • /
    • 1998
  • In this paper , a state space model for flexible beam is presented using the assumed-modes approach. The state space equation is derived for a flexible beam in which one end is connected to a motor and is driven by a torque equation and the other end is free. Many of the transfer function proposed thus far use the torque to the flexible beam as the input and the tip deflection of the flexible beam as the output. The Technique for the analysis and synthesis of the dual-input describing function(DIDF) is introduced here and the construction of a non-linear compensator, based on this technique, is proposed. This non-linear compensator, properly connected in the direct path of a closed-loop linear or non-linear control system. The above non-linear network is used to compensate linear and non-linear systems for instability, limit cycles, low speed of response and static accuracy. The effectiveness of the proposed scheme is demonstrated through computer simulation and experimental results.

  • PDF

Adsorption characteristic of Cu(II) and phosphate using non-linear and linear isotherm equation for chitosan bead (비선형과 선형 등온흡착식을 이용한 키토산비드의 구리와 인산염의 흡착특성)

  • Kim, Taehoon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.3
    • /
    • pp.201-210
    • /
    • 2020
  • 2 (Langmuir, Freundlich, Elovich, Temkin, and Dubinin-Radushkevich) and 3 (Sips and Redlich-Peterson)-parameter isotherm models were applied to evaluated for the applicability of adsorption of Cu(II) and/or phosphate isotherm using chitosan bead. Non-linear and linear isotherm adsorption were also compared on each parameter with coefficient of determination (R2). Among 2-parameter isotherms, non-linear Langmuir and Freundlich isotherm showed relatively higher R2 and appropriate maximum uptake (qm) than other isotherm equation although linear Dubinin-Radushkevich obtained highest R2. 3-parameter isotherm model demonstrated more reasonable and accuracy results than 2-parmeter isotherm in both non-linear and linear due to the addition of one parameter. The linearization for all of isotherm equation did not increase the applicability of adsorption models when error experiment data was included.