Vortex Filament Equation and Non-linear Schrödinger Equation in S^{3}

Hongning Zhang
Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
e-mail : hongning-zhang@163.com
Faen Wu
Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
e-mail: wufaen@yahoo.com
Abstract. In 1906, da Rios, a student of Leivi-Civita, wrote a master's thesis modeling the motion of a vortex in a viscous fluid by the motion of a curve propagating in R^{3}, in the direction of its binormal with a speed equal to its curvature. Much later, in 1971 Hasimoto showed the equivalence of this system with the non-linear Schrödinger equation (NLS)

$$
q_{t}=i\left(q_{s s}+\frac{1}{2}|q|^{2} q\right) .
$$

In this paper, we use the same idea as Terng used in her lecture notes but different technique to extend the above relation to the case of S^{3}, and obtained an analogous equation that

$$
q_{t}=i\left[q_{s s}+\left(\frac{1}{2}|q|^{2}+1\right) q\right] .
$$

1. Introduction

The material of this section was taken from [2] with a minor modification.

1.1. A special orthogonal frame field on S^{3}

S^{3} is the unit sphere in R^{4} i.e.,

$$
\begin{equation*}
S^{3}=\left\{x \in R^{4}| | x \mid=1\right\} . \tag{1.1}
\end{equation*}
$$

For any $x, y \in S^{3}$, the distance $d(x, y)$ between x and y is defined by

$$
\begin{equation*}
\cos d(x, y)=x \cdot y \tag{1.2}
\end{equation*}
$$

Received May 22, 2006, and, in revised form, December 5, 2006.
2000 Mathematics Subject Classification: 53C45, 53C40.
Key words and phrases: parallel frame Vortex filament equation non-linear schrödinger equation Frenet frame.

This paper was supported by project No. 10571088 of NSFC.
where $x \cdot y$ is the inner product of x and y. For any constant $a, a \in(0,1)$,there exists $A \in O(4)$ such that

$$
\begin{equation*}
d(x, A x)=a \forall x \in S^{3} \tag{1.3}
\end{equation*}
$$

For example we may take

$$
A=\left(\begin{array}{cccc}
a & -b & -c & -d \tag{1.4}\\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right) \text { or } A=\left(\begin{array}{cccc}
a & b & c & d \\
-b & a & -d & c \\
-c & d & a & -b \\
-d & -c & b & a
\end{array}\right)
$$

and $a^{2}+b^{2}+c^{2}+d^{2}=1$.
We can also regard S^{3} as a set of all the unit quaternions and regard R^{4} as a noncommutative division algebra. Its unit element is $1=(1,0,0,0)$, and its generators are $i=(0,1,0,0), j=(0,0,1,0),, k=(0,0,0,1)$, where i, j, k satisfy

$$
\left\{\begin{array}{l}
i \cdot j=k=-j \cdot i \tag{1.5}\\
j \cdot k=i=-k \cdot j \\
k \cdot i=j=-i \cdot k \\
i^{2}=j^{2}=k^{2}=-1 .
\end{array}\right.
$$

Define the module of a quaternion $x=x_{1} 1+x_{2} i+x_{3} j+x_{4} k \in R^{4}$ by

$$
\begin{equation*}
|x|^{2}=\sum_{i=1}^{4} x_{i}^{2} \tag{1.6}
\end{equation*}
$$

and the product of two quaternions has the property:

$$
\begin{equation*}
|x \cdot y|=|x| \cdot|y| \tag{1.7}
\end{equation*}
$$

for any $x, y \in R^{4}$. So the set of all the unit quaternions i.e S^{3} is a non-commutative Lie group. The two matrices in (1.4) just correspond to the left and right translation of $a 1+b i+c j+d k \in S^{3}$. That is to say, for $g=a 1+b i+c j+d k \in S^{3}$ we have

$$
\begin{gather*}
L g, R g: S^{3} \rightarrow S^{3} \\
L g(x)=g \cdot x ; \quad R g(x)=x \cdot g ; \quad \text { for } x \in S^{3} . \tag{1.8}
\end{gather*}
$$

The mapping

$$
a 1+b i+c j+d k \mapsto\left(\begin{array}{cccc}
a & -b & -c & -d \tag{1.9}\\
b & a & -d & c \\
c & d & a & -b \\
d & -c & b & a
\end{array}\right)
$$

gives an isomorphism from S^{3} to a subgroup of $\mathrm{O}(4)$ corresponding to the left translation which is determined by the element in S^{3}. It will be convenient to regard S^{3} as this subgroup for computation.

In the following we'll find the tangent space of S^{3} at the unit element. It is spaned by $x_{1}=(0,1,0,0), x_{2}=(0,0,1,0), x_{3}=(0,0,0,1)$. Notice that x_{1} is the tangent vector of the curve $c(t)=(\cos t, \sin t, 0,0) \in S^{3}$ at $1=(1,0,0,0)$. Since

$$
c(t)=\cos t \cdot 1+\sin t \cdot i=\left(\begin{array}{cccc}
\cos t & -\sin t & 0 & 0 \tag{1.10}\\
\sin t & \cos t & 0 & 0 \\
0 & 0 & \cos t & -\sin t \\
0 & 0 & \sin t & \cos t
\end{array}\right)
$$

so we can regard x_{1} as

$$
\left.\frac{d}{d t} c(t)\right|_{t=0}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \tag{1.11}\\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right) \in O(4)
$$

similarly regard x_{2}, x_{3} as

$$
\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \tag{1.12}\\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

respectively. It's easy to verify that

$$
\begin{equation*}
\left[x_{1}, x_{2}\right]=2 x_{3},\left[x_{2}, x_{3}\right]=2 x_{1},\left[x_{3}, x_{1}\right]=2 x_{2} . \tag{1.13}
\end{equation*}
$$

If we ignore the first commponent of $x_{i}, i=1,2,3$, and regard it as the vector of R^{3} then

$$
\left\{\begin{array}{l}
x_{1} \times x_{2}=x_{3} \tag{1.14}\\
x_{2} \times x_{3}=x_{1} \\
x_{3} \times x_{1}=x_{2}
\end{array}\right.
$$

or use the usual inner product and orientation in S^{3}, we can also define the above relation.

Let \tilde{x}_{i} be the vector field which is obtained by the left translation of x_{i} similarly we have

$$
\left\{\begin{array}{l}
\tilde{x}_{1} \times \tilde{x}_{2}=\tilde{x}_{3} \tag{1.15}\\
\tilde{x}_{2} \times \tilde{x}_{3}=\tilde{x}_{1} \\
\tilde{x}_{3} \times \tilde{x}_{1}=\tilde{x}_{2}
\end{array} .\right.
$$

The cross product " \times " in the tangent space at each piont in S^{3} is defined by ordinary inner product and orientation.

1.2. The Frenet frame of curves on S^{3}

In this section we want to build the Frenet frame of curves in S^{3}. The theory of curves in S^{3} has a special treatment. In other words we can use left invariant vector field \tilde{x}_{i} to express all the tangent vector fields on S^{3}.

Let $c:[0, l] \rightarrow S^{3}$ be a curve and parametrized by its arc length. Its tangent vector is

$$
\begin{equation*}
\frac{d}{d s} c(s)=t(s) \tag{1.16}
\end{equation*}
$$

as $c(s) \in S^{3}$, then

$$
\begin{equation*}
c(s) \cdot c(s)=1 \tag{1.17}
\end{equation*}
$$

Differentiating both sides of (1.17), we get

$$
\begin{equation*}
\frac{d}{d s} c(s) \cdot c(s)=0 \tag{1.18}
\end{equation*}
$$

So $t(s)=\frac{d}{d s} c(s)$ is the tangent vector field on S^{3} along $c(s)$, it can be expressed as

$$
\begin{equation*}
t(s)=\sum_{i=1}^{3} f_{i}(s) \tilde{x}_{i}(c(s)) \tag{1.19}
\end{equation*}
$$

where $f_{i}(s)$ are some smooth functions on $c(s)$. As $c(s)$ is parametrized by its arc length, so

$$
\begin{equation*}
\sum_{i=1}^{3} f_{i}^{2}(s)=1 \tag{1.20}
\end{equation*}
$$

Differentiating both sides of (1.20), we get

$$
\begin{equation*}
\sum_{i=1}^{3} f_{i}(s) f_{i}^{\prime}(s)=0 \tag{1.21}
\end{equation*}
$$

Let ∇^{\prime} denotes covariant differentiation on S^{3}. Any vector fields along $c(s)$ can be expressed as

$$
\begin{equation*}
\sum_{i=1}^{3} h_{i}(s) \tilde{x}_{i}(c(s)) \tag{1.22}
\end{equation*}
$$

Then

$$
\begin{align*}
& \frac{\nabla^{\prime}}{d s}\left\{\sum_{i=1}^{3} h_{i}(s) \tilde{x}_{i}(c(s))\right\} \tag{1.23}\\
= & \sum_{i=1}^{3} h_{i}^{\prime}(s) \tilde{x}_{i}(c(s))+\sum_{i=1}^{3} h_{i}(s) \frac{\nabla^{\prime}}{d s} \tilde{x}_{i}(c(s)) \\
= & \sum_{i=1}^{3} h_{i}^{\prime}(s) \tilde{x}_{i}(c(s))+\sum_{i=1}^{3} h_{i}(s) \sum_{j=1}^{3} f_{j}(s) \nabla_{\tilde{x}_{j}}^{\prime \tilde{x}_{i}}(c(s)) \\
= & \sum_{i=1}^{3} h_{i}^{\prime}(s) \tilde{x}_{i}(c(s))+\frac{1}{2} \sum_{i=1}^{3} \sum_{j=1}^{3} h_{i}(s) f_{j}(s)\left[\tilde{x}_{j}, \tilde{x}_{i}\right](c(s)) \\
= & \sum_{i=1}^{3} h_{i}^{\prime}(s) \tilde{x}_{i}(c(s))+\operatorname{det}\left(\begin{array}{ccc}
\tilde{x}_{1} & \tilde{x}_{2} & \tilde{x}_{3} \\
f_{1} & f_{2} & f_{3} \\
h_{1} & h_{2} & h_{3}
\end{array}\right) .
\end{align*}
$$

In particular

$$
\begin{equation*}
\frac{\nabla^{\prime}}{d s} t(s)=\sum_{i=1}^{3} f_{i}^{\prime}(s) \tilde{x}_{i}(c(s)) \tag{1.24}
\end{equation*}
$$

Define curvature function of curve $c(s)$ by

$$
\begin{equation*}
k=\left|\frac{\nabla^{\prime}}{d s} t(s)\right|=\left(\sum_{i=1}^{3} f_{i}^{\prime 2}(s)\right)^{\frac{1}{2}} \tag{1.25}
\end{equation*}
$$

Assume that $k \neq 0$ then the normal vector field along $c(s)$ is difined by

$$
\begin{equation*}
n=\frac{1}{k} \frac{\nabla^{\prime}}{d s} t(s)=\frac{1}{k} \sum_{i=1}^{3} f_{i}^{\prime}(s) \tilde{x}_{i}(c(s)) \tag{1.26}
\end{equation*}
$$

Then n is a unit vector of the tangent space of S^{3} at $c(s)$, and n is perpendicular to t.

Binormal vector field along $c(s)$ is given by:

$$
b=t \times n=\frac{1}{k} \operatorname{det}\left(\begin{array}{ccc}
\tilde{x}_{1} & \tilde{x}_{2} & \tilde{x}_{3} \tag{1.27}\\
f_{1} & f_{2} & f_{3} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime}
\end{array}\right) \equiv \frac{1}{k} \sum_{i=1}^{3} g_{i}(s) \tilde{x}_{i}(c(s)) .
$$

So b is still a unit vector of the tangent space of S^{3} at $c(s)$, and b is perpendicular to both t and n. By (1.26), (1.24) can be written as

$$
\begin{equation*}
\frac{\nabla^{\prime}}{d s} t(s)=k n \tag{1.28}
\end{equation*}
$$

Let

$$
\begin{equation*}
\tau=\frac{\nabla^{\prime}}{d s} n(s) \cdot b(s) \tag{1.29}
\end{equation*}
$$

the function τ is called the torsion of the curve $c(s)$. By direct computation we get

$$
\begin{gather*}
\frac{\nabla^{\prime}}{d s} n(s)=-k t(s)+\tau b(s) \tag{1.30}\\
\frac{\nabla^{\prime}}{d s} b(s)=-\tau n(s) \tag{1.31}
\end{gather*}
$$

So along the curve $c(s)$ there is an orthognal frame field $\{c(s) ; t(s), n(s), b(s)\}$ which is called Frenet frame of curves on S^{3}. (1.28), (1.30), (1.31) are called Frenet formula. We rewrite it in the matrix form

$$
\frac{\nabla^{\prime}}{d s}\left(\begin{array}{c}
t \tag{1.32}\\
n \\
b
\end{array}\right)=\left(\begin{array}{ccc}
0 & k & 0 \\
-k & 0 & \tau \\
0 & -\tau & 0
\end{array}\right)\left(\begin{array}{c}
t \\
n \\
b
\end{array}\right) .
$$

1.3. The parallel frame of curves on S^{3}

We want to change the Frenet frame $(t, n, b)^{T}$ to $\left(e_{1}, e_{2}, e_{3}\right)^{T}$ so that the 2,3 -th entry of the coefficient matrix of $\frac{\nabla^{\prime}}{d s}\left(e_{1}, e_{2}, e_{3}\right)^{T}$ is zero. To do this, we follow the method as described in [1]. Rotate the Frenet frame (n, b) by an angle $\beta(s)$ satisfy that

$$
\begin{equation*}
\beta^{\prime}(s)=-\tau(s), \tag{1.33}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{\nabla^{\prime}}{d s} e_{2} \cdot e_{3}=0 \tag{1.34}
\end{equation*}
$$

So that we get the new o.n frame $\left(e_{1}, e_{2}, e_{3}\right)^{T}$, and it satisfies

$$
\frac{\nabla^{\prime}}{d s}\left(\begin{array}{l}
e_{1} \tag{1.35}\\
e_{2} \\
e_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{1} & k_{2} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

where

$$
\left\{\begin{array}{l}
k_{1}=k \cos \beta(s) \tag{1.36}\\
k_{2}=-k \sin \beta(s)
\end{array} .\right.
$$

The o.n frame $\left(e_{1}, e_{2}, e_{3}\right)^{T}$ is called parallel frame along $c(s)$. The function $k_{1}(s), k_{2}(s)$ are called the principal curvatures along e_{2}, e_{3} respectively. However,
the choice of parallel frame is not unique, because we can replace $\beta(s)$ by $\beta(s)$ plus a constant β_{0}, get another o.n frame $\left(e_{1}, v_{2}, v_{3}\right)^{T}$. It is again parallel, but the principal curvature $\tilde{k}_{1}, \tilde{k}_{2}$ along v_{2}, v_{3} are satisfies

$$
\begin{equation*}
\frac{\nabla^{\prime}}{d s} e_{1}=k_{1} e_{2}+k_{2} e_{3}=\tilde{k}_{1} v_{2}+\tilde{k}_{2} v_{3} \tag{1.37}
\end{equation*}
$$

2. Vortex filament equation and the NLS in S^{3}

In 1906, da.Rios, a graduate student of Levi-Civita, wrote a master degree thesis, in which he modeled the movement of a thin vortex in a vicious fluid by the motion of a curve propagating in R^{3} in the direction of its binormal with a speed equal to its curvature according to

$$
\begin{equation*}
\gamma_{t}=\gamma_{s} \times \gamma_{s s} \tag{2.1}
\end{equation*}
$$

This is called the vortex filament equation or smoke ring equation, and it can be regarded as a dynamical system on the space of curves in R^{3}. Much later, in 1971, Hasimoto showed the equivalence of this system with the NLS

$$
\begin{equation*}
q_{t}=i\left(q_{s s}+\frac{1}{2}|q|^{2} q\right) \tag{2.2}
\end{equation*}
$$

In this section we'll build the vortex filament equation in S^{3} similar to that as in R^{3}, and study the relationship between vortex filament equation and the NLS in S^{3}. For any $\gamma(s, t)$ belongs to $S^{3}, \gamma(s, t)$ is a surface in S^{3} so

$$
\begin{equation*}
\gamma(s, t) \cdot \gamma(s, t)=1 \tag{2.3}
\end{equation*}
$$

Differentiating both sides of (2.3) with respect to s and t respectively

$$
\left\{\begin{array}{l}
\gamma_{s}(s, t) \cdot \gamma(s, t)=0 \tag{2.4}\\
\gamma_{t}(s, t) \cdot \gamma(s, t)=0
\end{array}\right.
$$

So both $\gamma_{s}(s, t)$ and $\gamma_{t}(s, t)$ are the vectors of the tangent space of S^{3} at $\gamma(s, t)$.
We can use left invariant vector fields \tilde{x}_{i} to express all the tangent vector fields on S^{3}, let

$$
\begin{equation*}
\gamma_{s}(s, t)=\sum_{i=1}^{3} f_{i}(s, t) \tilde{x}_{i}(s, t) \tag{2.5}
\end{equation*}
$$

then similar to (1.24),

$$
\begin{equation*}
\frac{\nabla^{\prime}}{d s} \gamma_{s}(s, t)=\sum_{i=1}^{3} \frac{d}{d s} f_{i}(s, t) \tilde{x}_{i}(\gamma(s, t)) . \tag{2.6}
\end{equation*}
$$

So $\gamma_{s}(s, t) \times \frac{\nabla^{\prime}}{d s} \gamma_{s}(s, t)$ is still a vector of tangent space of S^{3} at $\gamma(s, t)$. If $\gamma(s, t)$ satisfy

$$
\begin{equation*}
\gamma_{t}(s, t)=\gamma_{s}(s, t) \times \frac{\nabla^{\prime}}{d s} \gamma_{s}(s, t) \tag{2.7}
\end{equation*}
$$

we call $\gamma(s, t)$ is the vortex filament surface in S^{3}. (2.7) is called the vortex filament equation on S^{3}.

Equation (2.7) has the property:
Proposition. If $\gamma_{s}(s, t)$ is a solution of (2.7) and $\left|\gamma_{s}(s, 0)\right|=1$ for all s, then $\left|\gamma_{s}(s, t)\right|=1$ for all (s, t). In other words if $\gamma(\cdot, 0)$ is parametrized by arc length then so is $\gamma(\cdot, t)$ for all t.
Proof. It suffices to prove that

$$
\begin{equation*}
\frac{d}{d t}\left\langle\gamma_{s}(s, t), \gamma_{s}(s, t)\right\rangle=0 \tag{2.8}
\end{equation*}
$$

Remark: \langle,$\rangle is the inner product in S^{3}$. To see (2.8), we compute directly to get:

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d t}\left\langle\gamma_{s}(s, t), \gamma_{s}(s, t)\right\rangle=\left\langle\frac{\nabla^{\prime}}{d t} \gamma_{s}, \gamma_{s}\right\rangle \tag{2.9}\\
= & \left\langle\frac{d}{d t} \gamma_{s}-a \gamma, \gamma_{s}\right\rangle=\left\langle\frac{d}{d t} \gamma_{s}, \gamma_{s}\right\rangle \\
= & \left\langle\frac{d}{d s} \gamma_{t}, \gamma_{s}\right\rangle=\left\langle\frac{d}{d s}\left(\gamma_{s} \times \frac{\nabla^{\prime}}{d s} \gamma_{s}\right), \gamma_{s}\right\rangle \\
= & \left\langle\frac{d}{d s} \gamma_{s} \times \frac{\nabla^{\prime}}{d s} \gamma_{s}+\gamma_{s} \times \frac{d}{d s}\left(\frac{\nabla^{\prime}}{d s} \gamma_{s}\right), \gamma_{s}\right\rangle=\left\langle\frac{d}{d s} \gamma_{s} \times \frac{\nabla^{\prime}}{d s} \gamma_{s}, \gamma_{s}\right\rangle \\
= & \left(\gamma_{s}, \frac{d}{d s} \gamma_{s}, \frac{\nabla^{\prime}}{d s} \gamma_{s}\right)=\left(\frac{d}{d s} \gamma_{s}, \frac{\nabla^{\prime}}{d s} \gamma_{s}, \gamma_{s}\right) \\
= & \left(\frac{\nabla^{\prime}}{d s} \gamma_{s}+b \gamma, \frac{\nabla^{\prime}}{d s} \gamma_{s}, \gamma_{s}\right)=\left(\frac{\nabla^{\prime}}{d s} \gamma_{s}, \frac{\nabla^{\prime}}{d s} \gamma_{s}, \gamma_{s}\right) \\
= & 0 .
\end{align*}
$$

Both a and b are some functions on $\gamma(s, t)$. So for a solution $\gamma(s, t)$ of (2.7), we may assume that $\gamma(\cdot, t)$ is parametrized by arc length for all t.

Next we will explain the geometric meaning of the evolution equation on the space of curves in S^{3}. Let $(t, n, b)(\cdot, t)$ denote the Frenet frame of the curve $\gamma(\cdot, t)$. Since $\gamma_{s}=t$, and $\frac{\nabla^{\prime}}{d s} \gamma_{s}=\frac{\nabla^{\prime}}{d s} t=k n$ then the curve flow (2.7) becomes:

$$
\begin{equation*}
\gamma_{t}=k t \times n=k b \tag{2.10}
\end{equation*}
$$

In other words, the curve flow (2.7) moves in the direction of binormal with curvature as its speed in S^{3}. In the following, we write equation (2.7) in terms of parallel frame $\left(e_{1}, e_{2}, e_{3}\right)^{T}$. Recall that if we rotate the Frenet frame (n, b) by an angle $\beta(s, t)$ satisfy

$$
\begin{equation*}
\frac{d}{d s} \beta(s, t)=-\tau(s, t) \tag{2.11}
\end{equation*}
$$

then

$$
\begin{equation*}
b=\sin \beta e_{2}+\cos \beta e_{3} . \tag{2.12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\gamma_{t}=k b=k\left(\sin \beta e_{2}+\cos \beta e_{3}\right)=-k_{2} e_{2}+k_{1} e_{3} . \tag{2.13}
\end{equation*}
$$

In fact vortex filament equation (2.7) and NLS

$$
q_{t}=i\left[q_{s s}+\left(\frac{1}{2}|q|^{2}+1\right) q\right]
$$

shown the same motion equation. We will give the demonstration below.
Suppose $\gamma(s, t)$ is a solution of (2.7), choose a parallel frame $\left(e_{1}, e_{2}, e_{3}\right)^{T}(\cdot, t)$ for each curve $\gamma(\cdot, t)$. Let $k_{1}(\cdot, t)$ and $k_{2}(\cdot, t)$ denote the principal curvature of $\gamma(\cdot, t)$ along $e_{2}(\cdot, t), e_{3}(\cdot, t)$ respectively. Then we get

$$
\frac{\nabla^{\prime}}{d s}\left(\begin{array}{l}
e_{1} \tag{2.14}\\
e_{2} \\
e_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{1} & k_{2} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

We want to compute $\frac{\nabla^{\prime}}{d t}\left(e_{1}, e_{2}, e_{3}\right)^{T}$, so we first compute $\frac{\nabla^{\prime}}{d t} e_{1}(\cdot, t)$,

$$
\begin{align*}
& \frac{\nabla^{\prime}}{d t} e_{1}=\frac{\nabla^{\prime}}{d t} t=\frac{\nabla^{\prime}}{d t} \gamma_{s}=\frac{\nabla^{\prime}}{d s} \gamma_{t} \tag{2.15}\\
= & \frac{\nabla^{\prime}}{d s}\left(-k_{2} e_{2}+k_{1} e_{3}\right) \\
= & -\left(k_{2}\right)_{s} e_{2}+\left(-k_{2}\right) \frac{\nabla^{\prime}}{d s} e_{2}+\left(k_{1}\right)_{s} e_{3}+k_{1} \frac{\nabla^{\prime}}{d s} e_{3} \\
= & -\left(k_{2}\right)_{s} e_{2}+\left(k_{1}\right)_{s} e_{3}+\left(-k_{2}\right)\left(-k_{1} e_{1}\right)+k_{1}\left(-k_{2} e_{1}\right) \\
= & -\left(k_{2}\right)_{s} e_{2}+\left(k_{1}\right)_{s} e_{3} .
\end{align*}
$$

Since $e_{i}(s, t)$ are orthogonal, there exists a function $u(s, t)$ so that

$$
\frac{\nabla^{\prime}}{d t}\left(\begin{array}{c}
e_{1} \tag{2.16}\\
e_{2} \\
e_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\left(k_{2}\right)_{s} & \left(k_{1}\right)_{s} \\
\left(k_{2}\right)_{s} & 0 & u \\
-\left(k_{1}\right)_{s} & -u & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)
$$

Now, how to compute the function $u(s, t)$ is the key step. If we can find $u(s, t)$, then we can get the coefficient matrix of $\frac{\nabla^{\prime}}{d t}\left(e_{1}, e_{2}, e_{3}\right)^{T}$. Before computing $u(s, t)$ we give some preparative knowledge.
(1): Since

$$
\begin{align*}
\frac{\nabla^{\prime}}{d s} \frac{\nabla^{\prime}}{d t}-\frac{\nabla^{\prime}}{d t} \frac{\nabla^{\prime}}{d s} & =\nabla_{\frac{\partial}{\partial s}} \nabla_{\frac{\partial}{\partial t}}-\nabla_{\frac{\partial}{\partial t}} \nabla_{\frac{\partial}{\partial s}}-\nabla_{\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right]}+\nabla_{\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right]} \tag{2.17}\\
& =R\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right)+\nabla_{\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right]}
\end{align*}
$$

where $\nabla_{\left[\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right]}=0$, so

$$
\begin{equation*}
\frac{\nabla^{\prime}}{d t} \frac{\nabla^{\prime}}{d s}=\frac{\nabla^{\prime}}{d s} \frac{\nabla^{\prime}}{d t}-R\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right) \tag{2.18}
\end{equation*}
$$

$R\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right)$ is the curvature operator of S^{3}.
(2): Let M be a Rieman manifold of constant curvature K , for any $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{W}$ $\in T_{p} M$ we have
(2.19) $R(X, Y, Z, W)=\langle R(X, Y) Z, W\rangle=-K(\langle X, Z\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Y, Z\rangle)$.

This can refer to [3]. Since S^{3} is a space of constant curvature, and the sectional curvature $\mathrm{K}=1$. So

$$
\begin{align*}
& \left\langle R\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right) e_{2}, e_{3}\right\rangle \tag{2.20}\\
= & \left\langle R\left(e_{1},-k_{2} e_{2}+k_{1} e_{3}\right) e_{2}, e_{3}\right\rangle \\
= & (-1)\left(\left\langle e_{1}, e_{2}\right\rangle\left\langle-k_{2} e_{2}+k_{1} e_{3}, e_{3}\right\rangle-\left\langle e_{1}, e_{3}\right\rangle\left\langle-k_{2} e_{2}+k_{1} e_{3}, e_{2}\right\rangle\right) \\
= & 0
\end{align*}
$$

similarly

$$
\begin{align*}
\left\langle R\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right) e_{1}, e_{2}\right\rangle & =k_{2} \tag{2.21}\\
\left\langle R\left(\frac{\partial}{\partial s}, \frac{\partial}{\partial t}\right) e_{1}, e_{3}\right\rangle & =-k_{1} \tag{2.22}
\end{align*}
$$

by $(2.18),(2.20),(2.21),(2.22)$ we get

$$
\begin{gather*}
\left\langle\frac{\nabla^{\prime}}{d t} \frac{\nabla^{\prime}}{d s} e_{2}, e_{3}\right\rangle=\left\langle\frac{\nabla^{\prime}}{d s} \frac{\nabla^{\prime}}{d t} e_{2}, e_{3}\right\rangle, \tag{2.23}\\
\left\langle\frac{\nabla^{\prime}}{d t} \frac{\nabla^{\prime}}{d s} e_{1}, e_{2}\right\rangle=\left\langle\frac{\nabla^{\prime}}{d s} \frac{\nabla^{\prime}}{d t} e_{1}, e_{2}\right\rangle-k_{2}, \tag{2.24}\\
\left\langle\frac{\nabla^{\prime}}{d t} \frac{\nabla^{\prime}}{d s} e_{1}, e_{3}\right\rangle=\left\langle\frac{\nabla^{\prime}}{d s} \frac{\nabla^{\prime}}{d t} e_{1}, e_{3}\right\rangle+k_{1} . \tag{2.25}
\end{gather*}
$$

In the following we begin to compute $u(s, t)$,

$$
\begin{align*}
\left\langle\frac{\nabla^{\prime}}{d t}\left(\frac{\nabla^{\prime}}{d s} e_{2}\right), e_{3}\right\rangle & =\left\langle\frac{\nabla^{\prime}}{d t}\left(-k_{1} e_{1}\right), e_{3}\right\rangle \tag{2.26}\\
& =\left\langle-\left(k_{1}\right)_{t} e_{1}-k_{1} \frac{\nabla^{\prime}}{d t} e_{1}, e_{3}\right\rangle \\
& =\left\langle-k_{1}\left(-\left(k_{2}\right)_{s} e_{2}+\left(k_{1}\right)_{s} e_{3}\right), e_{3}\right\rangle \\
& =-k_{1}\left(k_{1}\right)_{s}
\end{align*}
$$

similarly

$$
\begin{equation*}
\left\langle\frac{\nabla^{\prime}}{d s}\left(\frac{\nabla^{\prime}}{d t} e_{2}\right), e_{3}\right\rangle=\left(k_{2}\right)_{s} k_{2}+u_{s} \tag{2.27}
\end{equation*}
$$

by (2.23)

$$
\begin{equation*}
-k_{1}\left(k_{1}\right)_{s}=\left(k_{2}\right)_{s} k_{2}+u_{s} . \tag{2.28}
\end{equation*}
$$

So

$$
\begin{equation*}
u=-\frac{1}{2}\left(k_{1}^{2}+k_{2}^{2}\right)+c(t) \tag{2.29}
\end{equation*}
$$

for some smooth function $c(t)$. Remember that for each fixed t, we can rotate $\left(e_{2}, e_{3}\right)(\cdot, t)$ by a constant angle $\theta(t)$ to another parallel normal frame $\left(v_{2}, v_{3}\right)(\cdot, t)$ of $\gamma(\cdot, t)$. If we choose $\theta(t)$ so that $\theta^{\prime}(t)=-c(t)$, then the new parallel frame satisfies

$$
\frac{\nabla^{\prime}}{d t}\left(\begin{array}{c}
e_{1} \tag{2.30}\\
v_{2} \\
v_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\left(\tilde{k}_{2}\right)_{s} & \left(\tilde{k}_{1}\right)_{s} \\
\left(\tilde{k}_{2}\right)_{s} & 0 & -\frac{\tilde{k}_{1}^{2}+\tilde{k}_{2}^{2}}{2} \\
-\left(\tilde{k}_{1}\right)_{s} & \frac{\tilde{k}_{1}^{2}+\tilde{k}_{2}^{2}}{2} & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

So we have proved the first part of the following theorem:
Theorem. Suppose $\gamma(s, t)$ is a solution of the vortex filament equation (2.7) and $|\gamma(s, 0)|=1$ for all s. Then
(1) there exists a parallel normal frame $\left(e_{1}, e_{2}, e_{3}\right)^{T}(\cdot, t)$ for each curve $\gamma(\cdot, t)$ so that

$$
\begin{align*}
& \frac{\nabla^{\prime}}{d s}\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & k_{1} & k_{2} \\
-k_{1} & 0 & 0 \\
-k_{2} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right), \tag{2.31}\\
& \frac{\nabla^{\prime}}{d t}\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right)=\left(\begin{array}{ccc}
0 & -\left(k_{2}\right)_{s} & \left(k_{1}\right)_{s} \\
\left(k_{2}\right)_{s} & 0 & -\frac{k_{1}^{2}+k_{2}^{2}}{2} \\
-\left(k_{1}\right)_{s} & \frac{k_{1}^{2}+k_{2}^{2}}{2} & 0
\end{array}\right)\left(\begin{array}{l}
e_{1} \\
e_{2} \\
e_{3}
\end{array}\right), \tag{2.32}
\end{align*}
$$

where $k_{1}(\cdot, t)$ and $k_{2}(\cdot, t)$ are the principal curvatures of $\gamma(\cdot, t)$ along $e_{2}(\cdot, t)$ and $e_{3}(\cdot, t)$ respectively.
(2) $q=k_{1}+i k_{2}$ is a solution of the NLS

$$
q_{t}=i\left[q_{s s}+\left(\frac{1}{2}|q|^{2}+1\right) q\right] .
$$

Proof. We have proved (1). For (2), we use (2.31),(2.32) to compute the evolution of $\left(k_{1}\right)_{t}$ and $\left(k_{2}\right)_{t}$.

$$
\begin{align*}
\left(k_{1}\right)_{t} & =\frac{\nabla^{\prime}}{d t} k_{1}=\frac{\nabla^{\prime}}{d t}\left\langle\frac{\nabla^{\prime}}{d s} e_{1}, e_{2}\right\rangle \tag{2.33}\\
& =\left\langle\frac{\nabla^{\prime}}{d t} \frac{\nabla^{\prime}}{d s} e_{1}, e_{2}\right\rangle+\left\langle\frac{\nabla^{\prime}}{d s} e_{1}, \frac{\nabla^{\prime}}{d t} e_{2}\right\rangle \\
& =\left\langle\frac{\nabla^{\prime}}{d s} \frac{\nabla^{\prime}}{d t} e_{1}, e_{2}\right\rangle-k_{2}+\left\langle k_{1} e_{2}+k_{2} e_{3},\left(k_{2}\right)_{s} e_{1}-\frac{k_{1}^{2}+k_{2}^{2}}{2} e_{3}\right\rangle \\
& =\left\langle\frac{\nabla^{\prime}}{d s}\left(-\left(k_{2}\right)_{s} e_{2}+\left(k_{1}\right)_{s} e_{3}\right), e_{2}\right\rangle-k_{2}-k_{2} \frac{k_{1}^{2}+k_{2}^{2}}{2} \\
& =-\left(k_{2}\right)_{s s}-k_{2}-k_{2} \frac{k_{1}^{2}+k_{2}^{2}}{2}
\end{align*}
$$

similarly

$$
\begin{equation*}
\left(k_{2}\right)_{t}=\left(k_{1}\right)_{s s}+k_{1}+k_{1} \frac{k_{1}^{2}+k_{2}^{2}}{2} \tag{2.34}
\end{equation*}
$$

Therefore

$$
\begin{align*}
q_{t} & =\left(k_{1}\right)_{t}+i\left(k_{2}\right)_{t} \tag{2.35}\\
& =-\left(k_{2}\right)_{s s}-k_{2}-k_{2} \frac{k_{1}^{2}+k_{2}^{2}}{2}+i\left(k_{1}\right)_{s s}+i k_{1}+i k_{1} \frac{k_{1}^{2}+k_{2}^{2}}{2} \\
& =i\left[q_{s s}+\left(\frac{1}{2}|q|^{2}+1\right) q\right] .
\end{align*}
$$

References

[1] Chuu-Lian Terng, Lecture 1 Peking University summer school, 2005.
[2] M. do Carmo, Riemannian Geometry, Birkhauser, Boston, 1992.
[3] M. Spivak, A Comprehensive Introduction to Differential Geometry, Vol. IV, Publish or Perish, 1979.
[4] W. Chen and S. S Chern, Lecture Notes On Differential Geometry Peking University press, 2004.
[5] H. Hasimoto, A soliton on a vortex filament, J. Fluid Mech., 51(1972), 477-485.
[6] Da Rios, L. S., On the motion of an unbounded fluid flow with an isolated vortex filament, (in Italian), Rend. Circ. Mat. Palermo, 22(1906), 117.

