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Abstract. In 1906, da Rios, a student of Leivi-Civita, wrote a master’s thesis modeling
the motion of a vortex in a viscous fluid by the motion of a curve propagating in R3, in the
direction of its binormal with a speed equal to its curvature. Much later, in 1971 Hasimoto
showed the equivalence of this system with the non-linear Schrödinger equation (NLS)

qt = i(qss +
1

2
|q|2q).

In this paper, we use the same idea as Terng used in her lecture notes but different
technique to extend the above relation to the case of S3, and obtained an analogous
equation that

qt = i[qss + (
1

2
|q|2 + 1)q].

1. Introduction

The material of this section was taken from [2] with a minor modification.

1.1. A special orthogonal frame field on S3

S3 is the unit sphere in R4 i.e.,

(1.1) S3 = {x ∈ R4||x| = 1}.

For any x, y ∈ S3, the distance d(x, y) between x and y is defined by

(1.2) cos d(x, y) = x · y,
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where x ·y is the inner product of x and y. For any constant a,a ∈ (0, 1),there exists
A ∈ O(4) such that

(1.3) d(x,Ax) = a ∀x ∈ S3.

For example we may take

(1.4) A =


a −b −c −d
b a −d c
c d a −b
d −c b a

 orA =


a b c d
−b a −d c
−c d a −b
−d −c b a

 ,

and a2 + b2 + c2 + d2 = 1.
We can also regard S3 as a set of all the unit quaternions and regard R4 as a non-

commutative division algebra. Its unit element is 1=(1,0,0,0), and its generators
are i = (0, 1, 0, 0), j = (0, 0, 1, 0, ), k = (0, 0, 0, 1), where i, j, k satisfy

(1.5)


i · j = k = −j · i
j · k = i = −k · j
k · i = j = −i · k
i2 = j2 = k2 = −1.

Define the module of a quaternion x = x11 + x2i + x3j + x4k ∈ R4 by

(1.6) |x|2 =
4∑

i=1

x2
i ,

and the product of two quaternions has the property:

(1.7) |x · y| = |x| · |y|,

for any x, y ∈ R4. So the set of all the unit quaternions i.e S3 is a non-commutative
Lie group. The two matrices in (1.4) just correspond to the left and right translation
of a1 + bi + cj + dk ∈ S3. That is to say, for g = a1 + bi + cj + dk ∈ S3 we have

Lg, Rg : S3 → S3

(1.8) Lg(x) = g · x; Rg(x) = x · g; for x ∈ S3.

The mapping
f : S3 → o(4)

(1.9) a1 + bi + cj + dk 7→


a −b −c −d
b a −d c
c d a −b
d −c b a

,
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gives an isomorphism from S3 to a subgroup of O(4) corresponding to the left
translation which is determined by the element in S3. It will be convenient to
regard S3 as this subgroup for computation.

In the following we’ll find the tangent space of S3 at the unit element. It is
spaned by x1 = (0, 1, 0, 0), x2 = (0, 0, 1, 0), x3 = (0, 0, 0, 1). Notice that x1 is the
tangent vector of the curve c(t) = (cos t, sin t, 0, 0) ∈ S3 at 1=(1,0,0,0). Since

(1.10) c(t) = cos t · 1 + sin t · i =


cos t − sin t 0 0
sin t cos t 0 0
0 0 cos t − sin t
0 0 sin t cos t

 ,

so we can regard x1 as

(1.11)
d

dt
c(t)|t=0 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ∈ O(4),

similarly regard x2 , x3 as

(1.12)


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0


respectively. It’s easy to verify that

(1.13) [x1, x2] = 2x3, [x2, x3] = 2x1, [x3, x1] = 2x2.

If we ignore the first commponent of xi, i = 1, 2, 3, and regard it as the vector of
R3 then

(1.14)

 x1 × x2 = x3

x2 × x3 = x1

x3 × x1 = x2

,

or use the usual inner product and orientation in S3, we can also define the above
relation.

Let x̃i be the vector field which is obtained by the left translation of xi

similarly we have

(1.15)

 x̃1 × x̃2 = x̃3

x̃2 × x̃3 = x̃1

x̃3 × x̃1 = x̃2

.

The cross product ”×” in the tangent space at each piont in S3 is defined by ordinary
inner product and orientation.
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1.2. The Frenet frame of curves on S3

In this section we want to build the Frenet frame of curves in S3. The theory
of curves in S3 has a special treatment. In other words we can use left invariant
vector field x̃i to express all the tangent vector fields on S3.

Let c : [0, l] → S3 be a curve and parametrized by its arc length. Its tangent
vector is

(1.16)
d

ds
c(s) = t(s),

as c(s) ∈ S3, then

(1.17) c(s) · c(s) = 1.

Differentiating both sides of (1.17), we get

(1.18)
d

ds
c(s) · c(s) = 0.

So t(s) = d
dsc(s) is the tangent vector field on S3 along c(s), it can be expressed as

(1.19) t(s) =
3∑

i=1

fi(s)x̃i(c(s)),

where fi(s) are some smooth functions on c(s). As c(s) is parametrized by its arc
length, so

(1.20)
3∑

i=1

f2
i (s) = 1.

Differentiating both sides of (1.20), we get

(1.21)
3∑

i=1

fi(s)f ′i(s) = 0.

Let ∇′ denotes covariant differentiation on S3. Any vector fields along c(s) can be
expressed as

(1.22)
3∑

i=1

hi(s)x̃i(c(s)).
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Then

∇′

ds
{

3∑
i=1

hi(s)x̃i(c(s))}(1.23)

=
3∑

i=1

h′i(s)x̃i(c(s)) +
3∑

i=1

hi(s)
∇′

ds
x̃i(c(s))

=
3∑

i=1

h′i(s)x̃i(c(s)) +
3∑

i=1

hi(s)
3∑

j=1

fj(s)∇′x̃i(c(s))
x̃j

=
3∑

i=1

h′i(s)x̃i(c(s)) +
1
2

3∑
i=1

3∑
j=1

hi(s)fj(s)[x̃j , x̃i](c(s))

=
3∑

i=1

h′i(s)x̃i(c(s)) + det

 x̃1 x̃2 x̃3

f1 f2 f3

h1 h2 h3

 .

In particular

(1.24)
∇′

ds
t(s) =

3∑
i=1

f ′i(s)x̃i(c(s)).

Define curvature function of curve c(s)by

(1.25) k = |∇
′

ds
t(s)| = (

3∑
i=1

f ′2i (s))
1
2 .

Assume that k 6= 0 then the normal vector field along c(s) is difined by

(1.26) n =
1
k

∇′

ds
t(s) =

1
k

3∑
i=1

f ′i(s)x̃i(c(s)).

Then n is a unit vector of the tangent space of S3 at c(s), and n is perpendicular
to t.

Binormal vector field along c(s) is given by:

(1.27) b = t× n =
1
k

det

 x̃1 x̃2 x̃3

f1 f2 f3

f ′1 f ′2 f ′3

 ≡ 1
k

3∑
i=1

gi(s)x̃i(c(s)).

So b is still a unit vector of the tangent space of S3 at c(s), and b is perpendicular
to both t and n. By (1.26), (1.24) can be written as

(1.28)
∇′

ds
t(s) = kn.
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Let

(1.29) τ =
∇′

ds
n(s) · b(s),

the function τ is called the torsion of the curve c(s). By direct computation we get

(1.30)
∇′

ds
n(s) = −kt(s) + τb(s),

(1.31)
∇′

ds
b(s) = −τn(s).

So along the curve c(s) there is an orthognal frame field {c(s); t(s), n(s), b(s)}
which is called Frenet frame of curves on S3. (1.28), (1.30), (1.31) are called Frenet
formula. We rewrite it in the matrix form

(1.32)
∇′

ds

 t
n
b

 =

 0 k 0
−k 0 τ
0 −τ 0

  t
n
b

 .

1.3. The parallel frame of curves on S3

We want to change the Frenet frame (t, n, b)T to (e1, e2, e3)T so that the 2,3-th
entry of the coefficient matrix of ∇′

ds (e1, e2, e3)T is zero. To do this, we follow the
method as described in [1]. Rotate the Frenet frame (n, b) by an angle β(s) satisfy
that

(1.33) β′(s) = −τ(s),

then

(1.34)
∇′

ds
e2 · e3 = 0.

So that we get the new o.n frame (e1, e2, e3)T , and it satisfies

(1.35)
∇′

ds

 e1

e2

e3

 =

 0 k1 k2

−k1 0 0
−k2 0 0

  e1

e2

e3

 ,

where

(1.36)
{

k1 = k cos β(s)
k2 = −k sinβ(s) .

The o.n frame (e1, e2, e3)T is called parallel frame along c(s). The function
k1(s), k2(s) are called the principal curvatures along e2, e3 respectively. However,
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the choice of parallel frame is not unique, because we can replace β(s) by β(s)
plus a constant β0, get another o.n frame (e1, v2, v3)T . It is again parallel, but the
principal curvature k̃1, k̃2 along v2, v3 are satisfies

(1.37)
∇′

ds
e1 = k1e2 + k2e3 = k̃1v2 + k̃2v3.

2. Vortex filament equation and the NLS in S3

In 1906, da.Rios, a graduate student of Levi-Civita, wrote a master degree
thesis, in which he modeled the movement of a thin vortex in a vicious fluid by the
motion of a curve propagating in R3 in the direction of its binormal with a speed
equal to its curvature according to

(2.1) γt = γs × γss.

This is called the vortex filament equation or smoke ring equation, and it can be
regarded as a dynamical system on the space of curves in R3. Much later, in 1971,
Hasimoto showed the equivalence of this system with the NLS

(2.2) qt = i(qss +
1
2
|q|2q).

In this section we’ll build the vortex filament equation in S3 similar to that as
in R3, and study the relationship between vortex filament equation and the NLS in
S3. For any γ(s, t) belongs to S3, γ(s, t) is a surface in S3 so

(2.3) γ(s, t) · γ(s, t) = 1.

Differentiating both sides of (2.3) with respect to s and t respectively

(2.4)
{

γs(s, t) · γ(s, t) = 0
γt(s, t) · γ(s, t) = 0.

So both γs(s, t) and γt(s, t) are the vectors of the tangent space of S3 at γ(s, t).
We can use left invariant vector fields x̃i to express all the tangent vector fields

on S3, let

(2.5) γs(s, t) =
3∑

i=1

fi(s, t)x̃i(s, t),

then similar to (1.24),

(2.6)
∇′

ds
γs(s, t) =

3∑
i=1

d

ds
fi(s, t)x̃i(γ(s, t)).
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So γs(s, t)×∇′

ds γs(s, t) is still a vector of tangent space of S3 at γ(s, t). If γ(s, t)satisfy

(2.7) γt(s, t) = γs(s, t)×
∇′

ds
γs(s, t),

we call γ(s, t) is the vortex filament surface in S3 . (2.7) is called the vortex filament
equation on S3.

Equation (2.7) has the property:

Proposition. If γs(s, t) is a solution of (2.7) and |γs(s, 0)| = 1 for all s, then
|γs(s, t)| = 1 for all (s, t). In other words if γ(·, 0) is parametrized by arc length
then so is γ(·, t) for all t.

Proof. It suffices to prove that

(2.8)
d

dt
〈γs(s, t), γs(s, t)〉 = 0

Remark: 〈, 〉 is the inner product in S3 . To see (2.8) , we compute directly to get:

1
2

d

dt
〈γs(s, t), γs(s, t)〉 = 〈∇

′

dt
γs, γs〉(2.9)

= 〈 d

dt
γs − aγ, γs〉 = 〈 d

dt
γs, γs〉

= 〈 d

ds
γt, γs〉 = 〈 d

ds
(γs ×

∇′

ds
γs), γs〉

= 〈 d

ds
γs ×

∇′

ds
γs + γs ×

d

ds
(
∇′

ds
γs), γs〉 = 〈 d

ds
γs ×

∇′

ds
γs, γs〉

= (γs,
d

ds
γs,

∇′

ds
γs) = (

d

ds
γs,

∇′

ds
γs, γs)

= (
∇′

ds
γs + bγ,

∇′

ds
γs, γs) = (

∇′

ds
γs,

∇′

ds
γs, γs)

= 0.

Both a and b are some functions on γ(s, t). So for a solution γ(s, t) of (2.7), we may
assume that γ(·, t) is parametrized by arc length for all t.

Next we will explain the geometric meaning of the evolution equation on the
space of curves in S3. Let (t, n, b)(·, t) denote the Frenet frame of the curve γ(·, t).
Since γs = t, and ∇′

ds γs = ∇′

ds t = kn then the curve flow (2.7) becomes:

(2.10) γt = kt× n = kb.

In other words, the curve flow (2.7) moves in the direction of binormal with cur-
vature as its speed in S3. In the following, we write equation (2.7) in terms of
parallel frame (e1, e2, e3)T . Recall that if we rotate the Frenet frame (n, b) by an
angle β(s, t) satisfy

(2.11)
d

ds
β(s, t) = −τ(s, t),
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then

(2.12) b = sinβe2 + cos βe3.

Hence

(2.13) γt = kb = k(sinβe2 + cos βe3) = −k2e2 + k1e3.

In fact vortex filament equation (2.7) and NLS

qt = i[qss + (
1
2
|q|2 + 1)q]

shown the same motion equation. We will give the demonstration below.
Suppose γ(s, t) is a solution of (2.7), choose a parallel frame (e1, e2, e3)T (·, t) for

each curve γ(·, t). Let k1(·, t) and k2(·, t) denote the principal curvature of γ(·, t)
along e2(·, t), e3(·, t) respectively. Then we get

(2.14)
∇′

ds

 e1

e2

e3

 =

 0 k1 k2

−k1 0 0
−k2 0 0

  e1

e2

e3

 .

We want to compute ∇′

dt (e1, e2, e3)T , so we first compute ∇′

dt e1(·, t),

∇′

dt
e1 =

∇′

dt
t =

∇′

dt
γs =

∇′

ds
γt(2.15)

=
∇′

ds
(−k2e2 + k1e3)

= −(k2)se2 + (−k2)
∇′

ds
e2 + (k1)se3 + k1

∇′

ds
e3

= −(k2)se2 + (k1)se3 + (−k2)(−k1e1) + k1(−k2e1)
= −(k2)se2 + (k1)se3.

Since ei(s, t) are orthogonal, there exists a function u(s, t) so that

(2.16)
∇′

dt

 e1

e2

e3

 =

 0 −(k2)s (k1)s

(k2)s 0 u
−(k1)s −u 0

  e1

e2

e3

 .

Now, how to compute the function u(s, t) is the key step. If we can find u(s, t),
then we can get the coefficient matrix of ∇′

dt (e1, e2, e3)T . Before computing u(s, t)
we give some preparative knowledge.

(1): Since

∇′

ds

∇′

dt
− ∇′

dt

∇′

ds
= ∇ ∂

∂s
∇ ∂

∂t
−∇ ∂

∂t
∇ ∂

∂s
−∇[ ∂

∂s , ∂
∂t ] +∇[ ∂

∂s , ∂
∂t ](2.17)

= R(
∂

∂s
,

∂

∂t
) +∇[ ∂

∂s , ∂
∂t ],
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where ∇[ ∂
∂s , ∂

∂t ] = 0, so

(2.18)
∇′

dt

∇′

ds
=
∇′

ds

∇′

dt
−R(

∂

∂s
,

∂

∂t
).

R( ∂
∂s , ∂

∂t ) is the curvature operator of S3.

(2): Let M be a Rieman manifold of constant curvature K, for any X,Y, Z ,W
∈ TpM we have

(2.19) R(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉 = −K(〈X, Z〉〈Y, W 〉 − 〈X, W 〉〈Y,Z〉).

This can refer to [3]. Since S3 is a space of constant curvature, and the sectional
curvature K=1. So

〈R(
∂

∂s
,

∂

∂t
)e2, e3〉(2.20)

= 〈R(e1,−k2e2 + k1e3)e2, e3〉
= (−1)(〈e1, e2〉〈−k2e2 + k1e3, e3〉 − 〈e1, e3〉〈−k2e2 + k1e3, e2〉)
= 0

similarly

(2.21) 〈R(
∂

∂s
,

∂

∂t
)e1, e2〉 = k2,

(2.22) 〈R(
∂

∂s
,

∂

∂t
)e1, e3〉 = −k1

by (2.18), (2.20), (2.21), (2.22) we get

(2.23) 〈∇
′

dt

∇′

ds
e2, e3〉 = 〈∇

′

ds

∇′

dt
e2, e3〉,

(2.24) 〈∇
′

dt

∇′

ds
e1, e2〉 = 〈∇

′

ds

∇′

dt
e1, e2〉 − k2,

(2.25) 〈∇
′

dt

∇′

ds
e1, e3〉 = 〈∇

′

ds

∇′

dt
e1, e3〉+ k1.

In the following we begin to compute u(s, t) ,

〈∇
′

dt
(
∇′

ds
e2), e3〉 = 〈∇

′

dt
(−k1e1), e3〉(2.26)

= 〈−(k1)te1 − k1
∇′

dt
e1, e3〉

= 〈−k1(−(k2)se2 + (k1)se3), e3〉
= −k1(k1)s
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similarly

(2.27) 〈∇
′

ds
(
∇′

dt
e2), e3〉 = (k2)sk2 + us,

by (2.23)

(2.28) −k1(k1)s = (k2)sk2 + us.

So

(2.29) u = −1
2
(k2

1 + k2
2) + c(t),

for some smooth function c(t). Remember that for each fixed t, we can rotate
(e2, e3)(·, t)by a constant angle θ(t) to another parallel normal frame (v2, v3)(·, t)of
γ(·, t). If we choose θ(t) so that θ′(t) = −c(t), then the new parallel frame satisfies

(2.30)
∇′

dt

 e1

v2

v3

 =

 0 −(k̃2)s (k̃1)s

(k̃2)s 0 − k̃2
1+k̃2

2
2

−(k̃1)s
k̃2
1+k̃2

2
2 0


 e1

v2

v3

 .

So we have proved the first part of the following theorem:

Theorem. Suppose γ(s, t) is a solution of the vortex filament equation (2.7) and
|γ(s, 0)| = 1 for all s. Then

(1) there exists a parallel normal frame (e1, e2, e3)T (·, t) for each curve γ(·, t) so
that

(2.31)
∇′

ds

 e1

e2

e3

 =

 0 k1 k2

−k1 0 0
−k2 0 0

  e1

e2

e3

 ,

(2.32)
∇′

dt

 e1

e2

e3

 =

 0 −(k2)s (k1)s

(k2)s 0 −k2
1+k2

2
2

−(k1)s
k2
1+k2

2
2 0


 e1

e2

e3

 ,

where k1(·, t) and k2(·, t) are the principal curvatures of γ(·, t) along e2(·, t)and
e3(·, t) respectively.

(2) q = k1 + ik2 is a solution of the NLS

qt = i[qss + (
1
2
|q|2 + 1)q].
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Proof. We have proved (1). For (2), we use (2.31),(2.32) to compute the evolution
of (k1)t and (k2)t.

(k1)t =
∇′

dt
k1 =

∇′

dt
〈∇

′

ds
e1, e2〉(2.33)

= 〈∇
′

dt

∇′

ds
e1, e2〉+ 〈∇

′

ds
e1,

∇′

dt
e2〉

= 〈∇
′

ds

∇′

dt
e1, e2〉 − k2 + 〈k1e2 + k2e3, (k2)se1 −

k2
1 + k2

2

2
e3〉

= 〈∇
′

ds
(−(k2)se2 + (k1)se3), e2〉 − k2 − k2

k2
1 + k2

2

2

= −(k2)ss − k2 − k2
k2
1 + k2

2

2

similarly

(2.34) (k2)t = (k1)ss + k1 + k1
k2
1 + k2

2

2
.

Therefore

qt = (k1)t + i(k2)t(2.35)

= −(k2)ss − k2 − k2
k2
1 + k2

2

2
+ i(k1)ss + ik1 + ik1

k2
1 + k2

2

2

= i[qss + (
1
2
|q|2 + 1)q].

�
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