• Title/Summary/Keyword: non-linear characteristics

Search Result 1,041, Processing Time 0.033 seconds

Finite element analysis of the PZT 3203HD bimorph beam actuator based on material non-linear characteristics (박막형 압전재료 3203HD의 재료 비선형성을 고려한 바이모프 보 작동기의 비선형 유한 요소해석)

  • Jang, Sung-Hoon;Kim, Young-Sung;Lee, Sang-Ki;Park, Hoon-Cheol;Yoon, Kwang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.18-23
    • /
    • 2004
  • In this paper, material non-linear behavior of PZT wafer(3203HD, CTS) under high electric field and stress is experimentally investigated and the non-linearity of the PZT wafer is numerically simulated. Empirical functions that can represent the non-linear behavior of the PZT wafer have been extracted based on the measured piezo-strain under stress. The functions are implemented in an incremental finite element formulation for material non-linear analysis. New definition of the piezoelectric constant and the incremental strain are incorporated into the finite element formulation for a better reproduction of the non-linear behavior. With the new definition of the in incremental piero-strain the measured non-linear behavior of the PZT wafer has been accurately reproduced even for high electric field. For validation of the measured non-linear characteristics and the proposed approach, a PZT bimorph beam actuator has been numerically and experimentally tested. The predicted actuation displacement, based on the material nonlinear finite element analysis, showed a good agreement with the measured one.

Vibration Analysis and Non-linear Equilibrium Equations of a Curved Pipe Conveying Fluid (유체가 흐르는 곡선관의 진동 해석과 비선형 평형 방정식)

  • Jung, Du-Han;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.983-986
    • /
    • 2005
  • Free vibration characteristics of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. Using the perturbation method, the non-linear governing equations divided into two parts; the steady state non-linear equilibrium equations and the linearized equations of motion in the neighborhood of the equilibrium position. The natural frequencies are computed from the linearized equations of motion. In this study, the equilibrium positions are determined by two types of equations, i.e., (1) the non-linear equations, and (2) the equations obtained by neglecting the non-linear terms. The natural frequencies obtained from the non-linear equilibrium equations are compared to those obtained from the linearized equilibrium equations. From the results, as the fluid velocity increases, the equilibrium position should be determined from the nonlinear equations for the vibration analysis of the curved pipe conveying fluid.

  • PDF

Mean-VaR Portfolio: An Empirical Analysis of Price Forecasting of the Shanghai and Shenzhen Stock Markets

  • Liu, Ximei;Latif, Zahid;Xiong, Daoqi;Saddozai, Sehrish Khan;Wara, Kaif Ul
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1201-1210
    • /
    • 2019
  • Stock price is characterized as being mutable, non-linear and stochastic. These key characteristics are known to have a direct influence on the stock markets globally. Given that the stock price data often contain both linear and non-linear patterns, no single model can be adequate in modelling and predicting time series data. The autoregressive integrated moving average (ARIMA) model cannot deal with non-linear relationships, however, it provides an accurate and effective way to process autocorrelation and non-stationary data in time series forecasting. On the other hand, the neural network provides an effective prediction of non-linear sequences. As a result, in this study, we used a hybrid ARIMA and neural network model to forecast the monthly closing price of the Shanghai composite index and Shenzhen component index.

Effect of sequential earthquakes on evaluation of non-linear response of 3D RC MRFs

  • Oggu, Praveen;Gopikrishna, K.
    • Earthquakes and Structures
    • /
    • v.20 no.3
    • /
    • pp.279-293
    • /
    • 2021
  • Most of the existing seismic codes for RC buildings consider only a scenario earthquake for analysis, often characterized by the response spectrum at the specified location. However, any real earthquake event often involves occurrences of multiple earthquakes within a few hours or days, possessing similar or even higher energy than the first earthquake. This critically impairs the rehabilitation measures thereby resulting in the accumulation of structural damages for subsequent earthquakes after the first earthquake. Also, the existing seismic provisions account for the non-linear response of an RC building frame implicitly by specifying a constant response modification factor (R) in a linear elastic design. However, the 'R' specified does not address the changes in structural configurations of RC moment-resisting frames (RC MRFs) viz., building height, number of bays present, bay width, irregularities arising out of mass and stiffness changes, etc. resulting in changed dynamic characteristics of the structural system. Hence, there is an imperative need to assess the seismic performance under sequential earthquake ground motions, considering the adequacy of code-specified 'R' in the representation of dynamic characteristics of RC buildings. Therefore, the present research is focused on the evaluation of the non-linear response of medium-rise 3D RC MRFs with and without vertical irregularities under bi-directional sequential earthquake ground motions using non-linear dynamic analysis. It is evident from the results that collapse probability increases, and 'R' reduces significantly for various RC MRFs subjected to sequential earthquakes, pronouncing the vulnerability and inadequacy of estimation of design base shear by code-specified 'R' under sequential earthquakes.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.445-451
    • /
    • 2005
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.129-133
    • /
    • 2004
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.

  • PDF

Investigation of nonlinear free vibration of FG-CNTRC cylindrical panels resting on elastic foundation

  • J.R. Cho
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.439-449
    • /
    • 2023
  • Non-linear vibration characteristics of functionally graded CNT-reinforced composite (FG-CNTRC) cylindrical shell panel on elastic foundation have not been sufficiently examined. In this situation, this study aims at the profound numerical investigation of the non-linear vibration response of FG-CNTRC cylindrical panels on Winkler-Pasternak foundation by introducing an accurate and effective 2-D meshfree-based non-linear numerical method. The large-amplitude free vibration problem is formulated according to the first-order shear deformation theory (FSDT) with the von Karman non-linearity, and it is approximated by Laplace interpolation functions in 2-D natural element method (NEM) and a non-linear partial derivative operator HNL. The complex and painstaking numerical derivation on the curved surface and the crucial shear locking are overcome by adopting the geometry transformation and the MITC3+ shell elements. The derived nonlinear modal equations are iteratively solved by introducing a three-step iterative solving technique which is combined with Lanczos transformation and Jacobi iteration. The developed non-linear numerical method is estimated through the benchmark test, and the effects of foundation stiffness, CNT volume fraction and functionally graded pattern, panel dimensions and boundary condition on the non-linear vibration of FG-CNTRC cylindrical panels on elastic foundation are parametrically investigated.

Analysis of Non-linear Quantity Discount for Heterogeneous Characteristics (상이한 복수고객에 대한 비선형 가격할인)

  • Lee, Kyung-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.2
    • /
    • pp.23-31
    • /
    • 1989
  • From the supplier's point of view, we examine the existence of a Pareto superior pricing schedule for one wholesaler with multiple retailers. In the case of multiple retailers, an order quantity pricing schedule should depends on the retailer's underlying characteristics. But identification of each retailer's characteristics may be impossible; rather, the wholesaler knows only the probability distribution of each retailer's characteristics. Perfect price discrimination is impossible because a separate pricing schedule cannot be tailored for each retailer. Some degree of discrimination is possible only by using a non-linear pricing schedule. From this analysis based on the non-linear pricing, we conclude that there is no Pareto superior pricing schedule for the case of multiple retailers.

  • PDF

Analysis of the Dynamic Characteristics of the Linear Motors (선형 모터의 동특성 분석)

  • Seol, Jin-Soo;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.258-263
    • /
    • 2005
  • The nearest variety of the industrial world requires using the high precision and resolution positioning technology to do a semi-conductor, information field , and measurement field. It is especially important for the positioning technology that makes up a proper controller, is affected by the minimal heat and vibration, and can control a structurally generated non-linear friction factor to determine the efficiency of the system. The paper is to analyze the vibration characteristic according to the speed of linear motor and grasp the dynamic characteristic through the modal test and show the verification of the experimental result and design parameters by using FEM(Finite Element Method). Also, it shows the optimum standard analyzed the acceleration patterns of the moving part that lead to the vibration source in linear motor. It presents the analyzed dynamic of linear motor in compliance with a change of the non-linear factor.

  • PDF

Analyzing nonlinear vibrations of metal foam nanobeams with symmetric and non-symmetric porosities

  • Alasadi, Abbas A.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.273-282
    • /
    • 2019
  • This article is concerned with the investigation of geometrically non-linear vibration response of refined thick porous nanobeams. To this end, non-local theory of elasticity has been adopted to provide the nanobeam formulation. Voids or pores can affect the material characteristics of the nanobeam. So, their effects have been considered in this research and also there are various void distributions. The closed form solution of the non-linear problem has been used that is adopted from previous articles. Then, it is focused on the impacts of non-local field, void distribution, void amount and geometrical properties on non-linear vibrational characteristic of a nano-size beam.