• 제목/요약/키워드: non-elastic response

검색결과 138건 처리시간 0.033초

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

이동질량에 의한 불균일 단면보의 동적응답 (Dynamic Response of Non-Uniform Beams under a Moving Mass)

  • 김인우;이영신;이규섭;류봉조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.553-556
    • /
    • 2000
  • The paper deals with the dynamic response of non-uniform beams subjected to a moving mass. In the dynamic analysis, the effects of inertia force, elastic force, centrifugal force, Coriolis force and self weight due to moving mass are taken into account. Galerkin's mode summation method is applied for the discretized equations of notion. Numerical results for the dynamic response of the non-uniform beam under a moving mass having various magnitudes and velocities are investigated. Experimental results have a good agrement with predictions

  • PDF

Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • 제32권4호
    • /
    • pp.509-519
    • /
    • 2019
  • In this paper, an analytical approach for the free vibration analysis of spiral stiffened functionally graded (SSFG) cylindrical shells is investigated. The SSFG shell is resting on linear and non-linear elastic foundation with damping force. The elastic foundation for the linear model is according to Winkler and Pasternak parameters and for the non-linear model, one cubic term is added. The material constitutive of the stiffeners is continuously changed through the thickness. Using the Galerkin method based on the von $K\acute{a}rm\acute{a}n$ equations and the smeared stiffeners technique, the non-linear vibration problem has been solved. The effects of different geometrical and material parameters on the free vibration response of SSFG cylindrical shells are adopted. The results show that the angles of stiffeners and elastic foundation parameters strongly effect on the natural frequencies of the SSFG cylindrical shell.

Dynamic analysis of gradient elastic flexural beams

  • Papargyri-Beskou, S.;Polyzos, D.;Beskos, D.E.
    • Structural Engineering and Mechanics
    • /
    • 제15권6호
    • /
    • pp.705-716
    • /
    • 2003
  • Gradient elastic flexural beams are dynamically analysed by analytic means. The governing equation of flexural beam motion is obtained by combining the Bernoulli-Euler beam theory and the simple gradient elasticity theory due to Aifantis. All possible boundary conditions (classical and non-classical or gradient type) are obtained with the aid of a variational statement. A wave propagation analysis reveals the existence of wave dispersion in gradient elastic beams. Free vibrations of gradient elastic beams are analysed and natural frequencies and modal shapes are obtained. Forced vibrations of these beams are also analysed with the aid of the Laplace transform with respect to time and their response to loads with any time variation is obtained. Numerical examples are presented for both free and forced vibrations of a simply supported and a cantilever beam, respectively, in order to assess the gradient effect on the natural frequencies, modal shapes and beam response.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

탄성 댐퍼가 추가된 대형철골 구조물의 응답특성 (Response Characteristics Of Steel Frame Structuresw With Added Elastic Dampers)

  • 배춘희;조철환;양경현;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.593-598
    • /
    • 2002
  • Coupling adjacent steel frame using elastic dampers for control of response to low and moderate dynamic event is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristic, mainly modal damping ratio and modal frequency, of damper linked linear adjacent steel frame for fractical use. Dynamic response of steel frame linked by hydraulic-excitation method. This combined method can efectively and accurately determine dynamic response of non-clasically damped systems in the frequency domain. Parametric studties are finally performed to identify optimal parameters of elastic dampers for achieving the maximum modal damping ratio or the maximum response reduction of steel frame. It is demonstrated that using discrete elasatic dampers of proper parameters to link steel frame can reduce dynamic response significantly.

  • PDF

Vertical isolation of a structure based on different states of seismic performance

  • Milanchian, Reza;Hosseini, Mahmood;Nekooei, Masoud
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.103-118
    • /
    • 2017
  • In vertical seismic isolation (VSI), a building is partitioned intentionally by vertical layers into two dynamically different substructures for seismic response reduction. Initially, a 1-story frame was partitioned into two substructures, interconnected by viscous and visco-elastic links, and seismic responses of the original and the vertically isolated structures (VIS) were obtained, considering a large number of stiffness and mass ratios of substructures with respect to the original structure. Color contour graphs were defined for presentation and investigation of large amounts of output results. Dynamic characteristics of the isolated structures were studied by considering the non-classical damping of the system, and then the effects of viscous and visco-elastic link parameters on the modal damping ratios were discussed. On this basis, three states of mass isolation, interactional state, and control mass were differentiated. Response history analyses were performed by Runge-Kutta numerical method. In these analyses, interaction of isolation ratios and link parameters, on response control of VIS was studied and the appropriate ranges for link parameters as well as the optimal ranges for isolation ratios were suggested. Results show that by using the VSI technique, seismic response reduction up to 50% in flexible substructure and even more in stiff substructure is achievable.

고무 재질 탄성 마운트의 비선형 대변형 거동 해석 (Non-linear Large Deformation Analysis of Elastic Rubber Mount)

  • 노인식;김종만;곽정석
    • 대한조선학회논문집
    • /
    • 제45권2호
    • /
    • pp.186-191
    • /
    • 2008
  • A lot of equipments installed in ships must be isolated for relaxing the shock, vibration and noise using the elastic mounts. Most of the elastic mounts are made of the rubber, however it is not easy to design the effective rubber mount. Because, in general, the rubber has a non-linear constitutive characteristics especially for a large deformation. So, there are many difficulties to estimate the accurate structural response of rubber which is the basis of the shape design of the mounts. In this study, the detailed non-linear viscoelastic large deformation finite element analysis method was dealt with. And to verify validity of the present analysis scheme, the results were compared with experiments.

Non-elastic responses of tall steel buildings subjected to across-wind forces

  • Tamura, Yukio;Yasui, Hachinori;Marukawa, Hisao
    • Wind and Structures
    • /
    • 제4권2호
    • /
    • pp.147-162
    • /
    • 2001
  • This paper presents an analytical method which takes into account the non-linearity of individual members, and discusses some case study results. It also discusses the relationship between member non-elastic behavior and excitation duration, and the relationship between member fracture and overall structure behavior. It is clearly demonstrated that the frame already shows almost unstable behavior due to long-columnization just before the occurrence of a column fracture. Then, a column fracture immediately induces a structural collapse mechanism.

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

  • Vinyas, M.;Harursampath, D.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.667-684
    • /
    • 2020
  • In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.