Browse > Article
http://dx.doi.org/10.12989/sem.2020.73.6.667

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory  

Vinyas, M. (Non-linear Multifunctional Composites Analysis and Design (NMCAD) Lab, Department of Aerospace Engineering, Indian Institute of Science)
Harursampath, D. (Non-linear Multifunctional Composites Analysis and Design (NMCAD) Lab, Department of Aerospace Engineering, Indian Institute of Science)
Kattimani, S.C. (Department of Mechanical Engineering, National Institute of Technology Karnataka)
Publication Information
Structural Engineering and Mechanics / v.73, no.6, 2020 , pp. 667-684 More about this Journal
Abstract
In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.
Keywords
Reddy's third order shear deformation theory; magneto-electro-elastic; temperature loading; pyrocoupling; open and closed circuit; static quantities;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Huang, D.J., Ding, H.J. and Chen, W.Q. (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", Int. J. Eng. Sci., 45(2), 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005.   DOI
2 Huang, D.J., Ding, H.J. and Chen, W.Q. (2010), "Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading", Eur. J. Mech. A/Solid., 29(3), 356-369. https://doi.org/10.1016/j.euromechsol.2009.12.002.   DOI
3 Kattimani, S.C. and Ray, M.C. (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electro-elastic plates", Int. J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012.   DOI
4 Kerur, S.B. and Ghosh, A. (2013), "Geometrically non-linear bending analysis of piezoelectric fiber-reinforced composite (MFC/AFC) cross-ply plate under hygrothermal environment", J. Therm. Stress., 36(12), 1255-1282. https://doi.org/10.1080/01495739.2013.818887.   DOI
5 Kondaiah, P., Shankar, K. and Ganesan, N. (2012), "Studies on magneto-electro-elastic cantilever beam under thermal environment", Couple. Syst. Mech., 1(2), 205-217. http://dx.doi.org/10.12989/csm.2012.1.2.205.   DOI
6 Kondaiah, P., Shankar, K. and Ganesan, N. (2013a), "Pyroelectric and pyromagnetic effects on behaviour of magneto-electro-elastic plate", Couple. Syst. Mech., 2, 1-22. https://doi.org/10.12989/csm.2013.2.1.001.   DOI
7 Kondaiah, P., Shankar, K. and Ganesan, N. (2013b), "Pyroelectric and pyromagnetic effects on multiphase magneto-electro-elastic cylindrical shells for axisymmetric temperature", Smart Mater. Struct., 22(2), 025007. http://dx.doi.org/10.1088/0964-1726/22/2/025007.   DOI
8 Kumaravel, A., Ganesan, N. and Sethuraman, R. (2007), "Steady-state analysis of a three-layered electro-magneto-elastic strip in a thermal environment", Smart Mater. Struct., 16(2), 282-295. https://doi.org/10.1088/0964-1726/16/2/006.   DOI
9 Vinyas, M., Piyush, J.S. and Kattimani, S.C. (2017a), "Influence of coupled fields on free vibration and static behavior of functionally graded magneto-electro-thermo-elastic plate", J. Intel. Mater. Syst. Struct., 29(7), 1430-1455. https://doi.org/10.1177/1045389X17740739.   DOI
10 Vinyas, M., Sandeep, A.S., Trung, N.T., Ebrahimi, F. and Duc, N.D. (2019d), "A finite element based assessment of free vibration behaviour of circular and annular magneto-electro-elastic plates using higher order shear deformation theory", J. Intel. Mater. Syst. Struct., 30(6), 2478-2501. https://doi.org/10.1177/1045389X19862386.   DOI
11 Vinyas, M., Sunny, K.K., Harursampath, D., Trung, N.T. and Loja, M.A.R. (2019b), "Influence of interphase on the multi-physics coupled frequency of three phase smart magneto-electro-elastic composite plates", Compos. Struct., 226, 111254. https://doi.org/10.1016/j.compstruct.2019.111254.   DOI
12 Wang, J., Chen, L. and Fang, S. (2003), "State vector approach to analysis of multilayered magneto-electro-elastic plates", Int. J. Solid. Struct., 40(7), 1669-1680. https://doi.org/10.1016/S0020-7683(03)00027-1.   DOI
13 Xin, L. and Hu, Z. (2015), "Free vibration of simply supported and multilayered magneto-electro-elastic plates", Compos. Struct., 121, 344-350. https://doi.org/10.1016/j.compstruct.2014.11.030.   DOI
14 Milazzo, A. (2014b), "Refined equivalent single layer formulations and finite elements for smart laminates free vibrations", Compos. Part B: Eng., 61, 238-253. http://dx.doi.org/10.1016/j.compositesb.2014.01.055.   DOI
15 Lage, R.G., Soares, C.M.M., Soares, C.A.M. and Reddy, J.N. (2004), "Layerwise partial mixed finite element analysis of magneto-electro-elastic plates", Comput. Struct., 82(17), 1293-1301. http://dx.doi.org/10.1016/j.compstruc.2004.03.026.   DOI
16 Milazzo, A. (2013), "A one-dimensional model for dynamic analysis of generally layered magneto-electro-elastic beams", J. Sound Vib., 332(2), 465-483. http://dx.doi.org/10.1016/j.jsv.2012.09.004.   DOI
17 Milazzo, A. (2014a), "Layer-wise and equivalent single layer models for smart multilayered plates", Compos. Part B: Eng., 67, 62-75. http://dx.doi.org/10.1016/j.compositesb.2014.06.021.   DOI
18 Moita, J.M.S., Soares, C.M.M. and Soares, C.A.M. (2009), "Analyses of magneto-electro-elastic plates using a higher order finite element model", Compos. Struct., 91(4), 421-426. http://dx.doi.org/10.1016/j.compstruct.2009.04.007.   DOI
19 Pan, E. (2001a), "Exact solution for simply supported and multilayered magneto-electro-elastic plates", J. Appl. Mech., 68(4), 608-618. http://dx.doi.org/10.1115/1.1380385.   DOI
20 Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", Int. J. Eng. Sci., 43(3), 321-339. http://dx.doi.org/10.1016/j.ijengsci.2004.09.006.   DOI
21 Pan, E. and Heyliger, P.R. (2003), "Exact solutions for magneto-electro-elastic laminates in cylindrical bending", Int. J. Solid. Struct., 40(24), 6859-6876. http://dx.doi.org/10.1016/j.ijsolstr.2003.08.003.   DOI
22 Razavi, S. and Shooshtari, A. (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 119, 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034.   DOI
23 Shooshtari, A. and Razavi, S. (2016), "Large-amplitude free vibration of magneto-electro-elastic curved panels", Scientia Iranica B, 23(6), 2606-2615.   DOI
24 Saadatfar, M. and Aghaie-Khafri, M. (2015), "On the behavior of a rotating functionally graded hybrid cylindrical shell with imperfect bonding subjected to hygrothermal condition", J. Therm. Stress., 38(8), 854-881. https://doi.org/10.1080/01495739.2015.1038487.   DOI
25 Shooshtari, A. and Razavi, S. (2015a), "Large amplitude free vibration of symmetrically laminated magneto-electro-elastic rectangular plates on Pasternak type foundation", Mech. Res. Commun., 69, 103-113. http://dx.doi.org/10.1016%2Fj.mechrescom.2015.06.011.   DOI
26 Shooshtari, A. and Razavi, S. (2015b), "Linear and nonlinear free vibration of a multilayered magneto-electro-elastic doubly-curved shell on elastic foundation", Compos. Part B: Eng., 78, 95-108. http://dx.doi.org/10.1016%2Fj.compositesb.2015.03.070.   DOI
27 Vinyas, M. (2019a), "A higher order free vibration analysis of carbon nanotube-reinforced magneto-electro-elastic plates using finite element methods", Compos. Part B: Eng., 158, 286-301. https://doi.org/10.1016/j.compositesb.2018.09.086.   DOI
28 Sit, M., Ray, C. and Biswas, D. (2015), "Thermal stress analysis of laminated composite plates using third order shear deformation theory", Advances in Structural Engineering, Eds. Matsagar, V., Springer, New Delhi, 149-156.
29 Sladek, J., Sladek, V., Krahulec, S. and Pan, E. (2013), "The MLPG analyses of large deflections of magnetoelectroelastic plates", Eng. Anal. Bound. Elem., 37(4), 673-682. https://doi.org/10.1016/j.enganabound.2013.02.001.   DOI
30 Sunar, M., Al-Garni, A.Z., Ali, M.H. and Kahraman, R. (2002), "Finite element modelling of thermopiezomagnetic smart structures", AIAA J., 40, 1845-1851. https://doi.org/10.2514/2.1862.
31 Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, Boca Raton, FL, USA.
32 Vinyas, M. and Kattimani, S.C. (2017f), "A 3D finite element static and free vibration analysis of magneto-electro-elastic beam", Coupl. Syst. Mech., 6(4), 465-485. https://doi.org/10.12989/csm.2017.6.4.465.   DOI
33 Vinyas, M. and Kattimani, S.C. (2017a), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.   DOI
34 Vinyas, M. and Kattimani, S.C. (2017b), "A Finite element based assessment of static behavior of multiphase magneto-electro-elastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.   DOI
35 Alaimo, A., Benedetti, I. and Milazzo, A. (2014), "A finite element formulation for large deflection of multilayered magneto-electro-elastic plates", Compos. Struct., 107, 643-653. https://dx.doi.org/10.1016/j.compstruct.2013.08.032.   DOI
36 Altay, G. and Dokmeci, M.C. (2000), "Some Hamiltonian-type variational principles for motions of a hygro-thermoelastic medium", J. Therm. Stress., 23, 273-284. https://dx.doi.org/10.1080/014957300280443.   DOI
37 Vinyas, M. and Kattimani, S.C. (2017c), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study", Compos. Struct., 178, 63-85. https://doi.org/10.1016/j.compstruct.2017.06.068.   DOI
38 Vinyas, M. and Kattimani, S.C. (2017d), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.41.   DOI
39 Vinyas, M. and Kattimani, S.C. (2017e), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupl. Syst. Mech., 6(3), 351-368. https://doi.org/10.12989/csm.2017.6.3.351.   DOI
40 Vinyas, M. and Kattimani, S.C. (2017g), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015.   DOI
41 Vinyas, M. (2019b), "Vibration control of skew magneto-electro-elastic plates using active constrained layer damping", Compos. Struct., 208, 600-617. https://doi.org/10.1016/j.compstruct.2018.10.046.   DOI
42 Chen, W. and Shioya, T. (2001), "Piezothermoelastic behavior of a pyroelectric spherical shell", J. Therm. Stress., 24(2), 105-120. https://doi.org/10.1080/01495730150500424.   DOI
43 Vinyas, M. and Kattimani, S.C. (2018a), "Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higher-order shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069.   DOI
44 Ansari, R. and Ghlomai, R. (2016), "Nonlocal free vibration in the pre- and postbuckled states of magneto-electro-thermo elastic rectangular nanoplates with various edge conditions", Smart Mater. Struct., 25, 095033.   DOI
45 Badri, T.M. and Al-Kayiem, H.H. (2013), "Analytical solution for simply supported and multilayered Magneto-Electro-Elastic Plates", Asian J. Scientif. Res., 6, 236-244. http://dx.doi.org/10.3923/ajsr.2013.236.244.   DOI
46 Benedetti, I. and Milazzo, A. (2017), "Advanced models for smart multilayered plates based on Reissner Mixed Variational Theorem", Compos. Part B: Eng., 119, 215-229. http://dx.doi.org/10.1016%2Fj.compositesb.2017.03.007.   DOI
47 Chen, J., Chen, H., Pan, E. and Heyliger, P.R. (2007), "Modal analysis of magneto-electro-elastic plates using the state-vector approach", J. Sound Vib., 304(3), 722-734. http://dx.doi.org/10.1016/j.jsv.2007.03.021.   DOI
48 Ebrahimi, F. and Barati, M.R. (2016b), "Hygrothermal buckling analysis of magnetically actuated embedded higher order functionally graded nanoscale beams considering the neutral surface position", J. Therm. Stress., 39(10), 1210-1229. https://doi.org/10.1080/01495739.2016.1215726.   DOI
49 Ebrahimi, F. and Shafiei, N. (2017), "Influence of initial shear stress on the vibration behavior of single-layered graphene sheets embedded in an elastic medium based on Reddy's higher-order shear deformation plate theory", Mech. Adv. Mater. Struct., 24(9), 761-772. https://doi.org/10.1080/15376494.2016.1196781.   DOI
50 Gholami, R., Ansari, R. and Gholami, Y. (2017), "Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates", Mater. Res. Exp., 4, 065702.   DOI
51 Vinyas, M., Kattimani, S.C., Harursampath, D. and Nguyen Thoi, T. (2019c), "Coupled evaluation of the free vibration characteristics of magneto-electro-elastic skew plates in hygrothermal environment", Smart Struct. Syst., 24(2), 267-292. https://doi.org/10.12989/sss.2019.24.2.267.   DOI
52 Vinyas, M. and Kattimani, S.C. (2018c), "Investigation of the effect of $BaTiO_3/CoFe_2O_4$ particle arrangement on the static response of magneto-electro-thermo-elastic plates", Compos. Struct., 185, 51-64. https://doi.org/10.1016/j.compstruct.2017.10.073.   DOI
53 Vinyas, M. and Kattimani, S.C. (2019a), "Finite element simulation of controlled frequency response of skewed multiphase magneto-electro-elastic plates", J. Intel. Mater. Syst. Struct., 30(12), 1757-1771. https://doi.org/10.1177/1045389X19843674.   DOI
54 Vinyas, M., Kattimani, S.C. and Sharanappa, J. (2018b), "Hygrothermal coupling analysis of magneto-electro-elastic beams using finite element methods", J. Therm. Stress., 41(8), 1063-1079. https://doi.org/10.1080/01495739.2018.1447856.   DOI
55 Vinyas, M., Kattimani, S.C., Loja, M.A.R. and Vishwas, M. (2018), "Effect of $BaTiO_3/CoFe_2O_4$ micro-topological textures on the coupled static behaviour of magneto-electro-thermo-elastic beams indifferent thermal environment", Mater. Res. Exp., 5, 125702. https://doi.org/10.1088/2053-1591/aae0c8.   DOI
56 Vinyas, M., Nischith, G., Loja, M.A.R., Ebrahimi, F. and Duc, N.D. (2019a), "Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory", Compos. Struct., 214, 132-142. https://doi.org/10.1016/j.compstruct.2019.02.010.   DOI