Browse > Article
http://dx.doi.org/10.12989/scs.2019.32.4.509

Nonlinear dynamic analysis of spiral stiffened cylindrical shells rested on elastic foundation  

Foroutan, Kamran (Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology)
Shaterzadeh, Alireza (Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology)
Ahmadi, Habib (Faculty of Mechanical and Mechatronics Engineering, Shahrood University of Technology)
Publication Information
Steel and Composite Structures / v.32, no.4, 2019 , pp. 509-519 More about this Journal
Abstract
In this paper, an analytical approach for the free vibration analysis of spiral stiffened functionally graded (SSFG) cylindrical shells is investigated. The SSFG shell is resting on linear and non-linear elastic foundation with damping force. The elastic foundation for the linear model is according to Winkler and Pasternak parameters and for the non-linear model, one cubic term is added. The material constitutive of the stiffeners is continuously changed through the thickness. Using the Galerkin method based on the von $K\acute{a}rm\acute{a}n$ equations and the smeared stiffeners technique, the non-linear vibration problem has been solved. The effects of different geometrical and material parameters on the free vibration response of SSFG cylindrical shells are adopted. The results show that the angles of stiffeners and elastic foundation parameters strongly effect on the natural frequencies of the SSFG cylindrical shell.
Keywords
FG cylindrical shells; non-linear free vibration; spiral stiffeners; damping; elastic foundation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Pellicano, F. (2007), "Vibrations of circular cylindrical shells: Theory and experiments", J. Sound Vib., 303(1-2), 154-170. https://doi.org/10.1016/j.jsv.2007.01.022   DOI
2 Qin, Z., Chu, F. and Zu, J. (2017), "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", Int. J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012   DOI
3 Qin, Z., Yang, Z., Zu, J. and Chu, F. (2018), "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", Int. J. Mech. Sci., 142, 127-139. https://doi.org/10.1016/j.ijmecsci.2018.04.044   DOI
4 Safaei, B., Moradi-Dastjerdi, R. and Chu, F. (2018), "Effect of thermal gradient load on thermo-elastic vibrational behavior of sandwich plates reinforced by carbon nanotube agglomerations", Compos. Struct., 192, 28-37. https://doi.org/10.1016/j.compstruct.2018.02.022   DOI
5 Safaei, B., Moradi-Dastjerdi, R., Qin, Z. and Chu, F. (2019), "Frequency-dependent forced vibration analysis of nanocomposite sandwich plate under thermo-mechanical loads", Compos. Part B-Eng., 161, 44-54. https://doi.org/10.1016/j.compositesb.2018.10.049   DOI
6 Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", NASA TN D-4705.
7 Sewall, J.L. Clary, R.R. and Leadbetter, S.A. (1964), "An Experimental and Analytical Vibration Study of a Ring-stiffened Cylindrical Shell Structure with Various Support Conditions", NASA TN D-2398.
8 Shaterzadeh, A. and Foroutan, K. (2016), "Post-buckling of cylindrical shells with spiral stiffeners under elastic foundation", Struct. Eng. Mech., Int. J., 60(4), 615-631. https://doi.org/10.12989/sem.2016.60.4.615   DOI
9 Sheng, G. and Wang, X. (2008), "Thermomechanical vibration analysis of a functionally graded shell with flowing fluid", Eur. J. Mech. A-Solid., 27(6), 1075-1087. https://doi.org/10.1016/j.euromechsol.2008.02.003   DOI
10 Shen, H.-S., Xiang, Y., Fan, Y. and Hui, D. (2018), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments", Compos. Part B-Eng., 136, 177-186. https://doi.org/10.1016/j.compositesb.2017.10.032   DOI
11 Sofiyev, A. (2005), "The stability of compositionally graded ceramic-metal cylindrical shells under aperiodic axial impulsive loading", Compos. Struct., 69(2), 247-257. https://doi.org/10.1016/j.compstruct.2004.07.004   DOI
12 Sofiyev, A. (2009), "The vibration and stability behavior of freely supported fgm conical shells subjected to external pressure", Compos. Struct., 89(3), 356-366. https://doi.org/10.1016/j.compstruct.2008.08.010   DOI
13 Sofiyev, A., Karaca, Z. and Zerin, Z. (2017), "Non-linear vibration of composite orthotropic cylindrical shells on the non-linear elastic foundations within the shear deformation theory", Compos. Struct., 159, 53-62. https://doi.org/10.1016/j.compstruct.2016.09.048   DOI
14 Volmir, A.S. (1972), Non-linear Dynamics of Plates and Shells, Science Edition M, USSR.
15 Soong, T.C. (1969), "Buckling of cylindrical shells with eccentric spiral-type stiffeners", AIAA. J, 7(1) 65-72. https://doi.org/10.2514/3.5036   DOI
16 Torkamani, S., Navazi, H., Jafari, A. and Bagheri, M. (2009), "Structural similitude in free vibration of orthogonally stiffened cylindrical shells", Thin Wall. Struct., 47(11), 1316-1330. https://doi.org/10.1016/j.tws.2009.03.013   DOI
17 Vasiliev, V.V. and Morozov, E.V. (2018), Advanced Mechanics of Composite Materials and Structures, Elsevier.
18 Brush, D.O. and Almroth, B.O. (1975), Buckling of Bars, Plates, and Shells, McGraw-Hill, New York, NY, USA.
19 Bich, D.H., Van Dung, D. and Nam, V.H. (2012), "Nonlinear dynamical analysis of eccentrically stiffened functionally graded cylindrical panels", Compos. Struct., 94(8), 2465-2473. https://doi.org/10.1016/j.compstruct.2012.03.012   DOI
20 Bich, D.H., Van Dung, D., Nam, V.H. and Phuong, N.T. (2013), "Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression", Int. J. Mech. Sci., 74, 190-200. https://doi.org/10.1016/j.ijmecsci.2013.06.002   DOI
21 Chen, M., Xie, K., Jia, W. and Xu, K. (2015), "Free and forced vibration of ring-stiffened conical-cylindrical shells with arbitrary boundary conditions", Ocean Eng., 108, 241-256.   DOI
22 Darabi, M., Darvizeh, M. and Darvizeh, A. (2008), "Non-linear analysis of dynamic stability for functionally graded cylindrical shells under periodic axial loading", Compos. Struct., 83(2), 201-211. https://doi.org/10.1016/j.compstruct.2007.04.014   DOI
23 Wang, Y. and Wu, D. (2017), "Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory", Aer. Sci. Technol., 66, 83-91. https://doi.org/10.1016/j.ast.2017.03.003   DOI
24 Yas, M.H. and Garmsiri, K. (2010), "Three-dimensional free vibration analysis of cylindrical shells with continuous grading reinforcement", Steel Compos. Struct., Int. J., 10(4), 349-360. https://doi.org/10.12989/scs.2010.10.4.349
25 Zghal, S., Frikha, A. and Dammak, F. (2018), "Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures", Appl. Math. Model., 53, 132-155. https://doi.org/10.1016/j.apm.2017.08.021   DOI
26 Choe, K., Tang, J., Shui, C., Wang, A. and Wang, Q. (2018a), "Free vibration analysis of coupled functionally graded (fg) doubly-curved revolution shell structures with general boundary conditions", Compos. Struct., 194, 413-432. https://doi.org/10.1016/j.compstruct.2018.04.035   DOI
27 Choe, K., Wang, Q. and Tang, J. (2018b), "Vibration analysis for coupled composite laminated axis-symmetric doubly-curved revolution shell structures by unified jacobi-ritz method", Compos. Struct., 194, 136-157. https://doi.org/10.1016/j.compstruct.2018.03.095   DOI
28 Dey, T. and Ramachandra, L. (2017), "Non-linear vibration analysis of laminated composite circular cylindrical shells", Compos. Struct., 163, 89-100. https://doi.org/10.1016/j.compstruct.2016.12.018   DOI
29 Duc, N.D., Nguyen, P.D. and Khoa, N.D. (2017), "Nonlinear dynamic analysis and vibration of eccentrically stiffened s-fgm elliptical cylindrical shells surrounded on elastic foundations in thermal environments", Thin Wall. Struct., 117, 178-189. https://doi.org/10.1016/j.tws.2017.04.013   DOI
30 Duc, N.D. and Thang, P.T. (2015), "Nonlinear dynamic response and vibration of shear deformable imperfect eccentrically stiffened s-fgm circular cylindrical shells surrounded on elastic foundations", Aer. Sci. Technol., 40, 115-127. https://doi.org/10.1016/j.tws.2017.04.013   DOI
31 Dung, D. and Nam, V.H. (2014), "Nonlinear dynamic analysis of eccentrically stiffened functionally graded circular cylindrical thin shells under external pressure and surrounded by an elastic medium", Eur. J. Mech. A-Solid., 46, 42-53. https://doi.org/10.1016/j.euromechsol.2014.02.008   DOI
32 Javed, S., Viswanathan, K.K. and Aziz, Z.A. (2016), "Free vibration analysis of composite cylindrical shells with non-uniform thickness walls", Steel Compos. Struct., Int. J., 20(5), 1087-1102. https://doi.org/10.12989/scs.2016.20.5.1087   DOI
33 Foroutan, M., Moradi-Dastjerdi, R. and Sotoodeh-Bahreini, R. (2012), "Static analysis of fgm cylinders by a mesh-free method", Steel Compos. Struct., Int. J., 12(1), 1-11. https://doi.org/10.12989/scs.2012.12.1.001
34 Ghiasian, S., Kiani, Y. and Eslami, M. (2013), "Dynamic buckling of suddenly heated or compressed fgm beams resting on nonlinear elastic foundation", Compos. Struct., 106, 225-234. https://doi.org/10.1016/j.compstruct.2013.06.001   DOI
35 He, X., Li, L., Kitipornchai, S., Wang, C. and Zhu, H. (2012), "Bi-stable analyses of laminated fgm shells", Int. J. Struct. Stab. Dyn., 12(2), 311-335. https://doi.org/10.1142/S0219455412500058
36 Khayat, M., Dehghan, S.M., Najafgholipour, M.A. and Baghlani, A. (2018), "Free vibration analysis of functionally graded cylindrical shells with different shell theories using semi-analytical method", Steel Compos. Struct., Int. J., 28(6), 735-748. https://doi.org/10.12989/scs.2018.28.6.735
37 Malikan, M., Dimitri, R. and Tornabene, F. (2018), "Effect of sinusoidal corrugated geometries on the vibrational response of viscoelastic nanoplates", Appl. Sci., 8(9), 1432. https://doi.org/10.3390/app8091432   DOI
38 Kiani, Y., Dimitri, R. and Tornabene, F. (2018a), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006   DOI
39 Kiani, Y., Dimitri, R. and Tornabene, F. (2018b), "Free vibration of fg-cnt reinforced composite skew cylindrical shells using the chebyshev-ritz formulation", Compos. Part B-Eng., 147, 169-177. https://doi.org/10.1016/j.compositesb.2018.04.028   DOI
40 Lee, H. and Kwak, M.K. (2015), "Free vibration analysis of a circular cylindrical shell using the rayleigh-ritz method and comparison of different shell theories", J. Sound Vib., 353, 344-377. https://doi.org/10.1016/j.jsv.2015.05.028   DOI
41 Mochida, Y., Ilanko, S., Duke, M. and Narita, Y. (2012), "Free vibration analysis of doubly curved shallow shells using the superposition-galerkin method", J. Sound Vib., 331(6), 1413-1425. https://doi.org/10.1016/j.jsv.2011.10.031   DOI
42 Mohammadi, M., Arefi, M., Dimitri, R. and Tornabene, F. (2019), "Higher-order thermo-elastic analysis of FG-CNTRC cylindrical vessels surrounded by a Pasternak foundation", Nanomaterials, 9(1), 79. https://doi.org/10.3390/nano9010079   DOI
43 Nayfeh, A.H. and Mook, D.T. (2008), Nonlinear Oscillations, John Wiley & Sons.
44 Nejati, M., Dimitri, R., Tornabene, F. and Hossein Yas, M. (2017), "Thermal buckling of nanocomposite stiffened cylindrical shells reinforced by functionally graded wavy carbon nanotubes with temperature-dependent properties", Appl. Sci., 7(12), 1223. https://doi.org/10.3390/app7121223   DOI
45 Paliwal, D., Pandey, R.K. and Nath, T. (1996), "Free vibrations of circular cylindrical shell on winkler and pasternak foundations", Int. J. Pres. Ves. Pip., 69(1), 79-89. https://doi.org/10.1016/0308-0161(95)00010-0   DOI