Browse > Article
http://dx.doi.org/10.12989/sem.2006.22.2.197

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect  

Kmet, S. (Faculty of Civil Engineering, Technical University of Kosice)
Tomko, M. (Faculty of Civil Engineering, Technical University of Kosice)
Brda, J. (Faculty of Civil Engineering, Technical University of Kosice)
Publication Information
Structural Engineering and Mechanics / v.22, no.2, 2006 , pp. 197-222 More about this Journal
Abstract
In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.
Keywords
suspended cable; time-dependent post-elastic analysis; creep of cable; non-linear analysis; closed-form analysis; discrete combined analysis; stress-strain diagram of cable; elastic limit; deflection equation of cable;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Gattulli, V., Martinelli, L., Perotti, F. and Vestroni, F. (2004), 'Nonlinear oscillations of cables under harmonic loading using analytical and finite element models', Comput. Meth. Appl. Mech. Eng., 193(1-2), 69-85   DOI   ScienceOn
2 Gosling, P.D. and Korban, E.A. (2001), 'A bendable finite element for the analysis of flexible cable structures', Finite Elements in Analysis and Design, 38(1), 32-45
3 Greenberg, D.P. (1970), 'Inelastic analysis of suspension roof-structures', J. Struct. Div., ASCE, 96(ST 3), 905-930
4 Hong, N.K., Chang, S. and Lee, S. (2002), 'Development of ANN-based preliminary structural design systems for cable-stayed bridges', Advanced in Engineering Software, 33(2), 85-96   DOI   ScienceOn
5 Irvine, H.M. (1981), Cable Structures, The MIT Press, Cambridge, Mass
6 Ivanyi, P. and Topping, B.H.V. (2002), 'A new graph representation for cable-membrane structures', Advanced in Engineering Software, 33(5), 273-279   DOI   ScienceOn
7 Jayaraman, H.B. and Knudson, W.C. (1981), 'A curved element for the analysis of cable structures', Comput. Struct., 14(3-4),325-333   DOI   ScienceOn
8 Jonatowski, J.J. and Bimstiel, C. (1970), 'Inelastic stiffened suspension cable structures', J. Struct. Div., ASCE, 96(6), 1143-1166
9 Kanno, Y., Ohsaki, M. and Ito, J. (2002), 'Large-deformation and friction analysis of non-linear elastic cable networks by second-order cone programming', Int. J. Numer. Meth. Eng., 55(9),1079-1114   DOI   ScienceOn
10 Kanno, Y., and Ohsaki, M. (2003), 'Minimum principle of complementary energy of cable networks by using second-order cone programming', Int. J. Solids Struct., 40(17), 4437-4460   DOI   ScienceOn
11 Kim, H., Shinozuka, M. and Chang, S. (2004), 'Geometrically nonlinear buffeting response of a cable-stayed bridge', J. Eng. Mech., 130(7), 848-857   DOI   ScienceOn
12 Kmet, S. (1994), 'Rheology of prestressed cable structures', Advances in Finite Element Techniques, M. Papadrakakis and B.H.V. Topping (Editors), Civil-Comp Press, Edinburgh, 185-200
13 Kmet, S. (2004), 'Non-linear rheology of tension structural element under single and variable loading history Part I: Theoretical derivations', Stntct. Eng. Mech., An Int. J., 18(5), 565-589
14 Kmet, S. and Holickova, L. (2004), 'Non-linear rheology of tension structural element under single and variable loading history Part II: Creep of steel rope - examples and parametrical study', Struct. Eng. Mech., An Int. J., 18(5), 591-607   DOI   ScienceOn
15 Levy, R. and Spillers, W. (1995), Analysis of Geometrically Nonlinear Stntctures. Kluwer Academic Publishers, London
16 Murray, T.M. and Willems, N. (1971), 'Analysis of inelastic suspension structures', J. Struct. Div., ASCE, 97(ST 12), 2791-2806
17 Palkowski, S. (1998), 'Analysis of cable in elasto-plastic range', Stahlbau, 67, H.10, S., 802-805 (in German)   DOI   ScienceOn
18 Panagiotopoulos, P.D. (1976), 'A variational inequality approach to the inelastic stress-unilateral analysis of cable-structures', Comput. Stntct., 6(1), 133-139   DOI   ScienceOn
19 Switka, P. (1988), 'Problems of cable constructions analysis', Advances in Mechanics, 11(4),3-51
20 Talvik, I. (2001), 'Finite element modelling of cable networks with flexible supports', Comput. Stntct., 79(26-28), 2443-2450   DOI   ScienceOn
21 Wang, L. and Xu, Y.L. (2003), 'Wind-min-induced vibration of cable: An analytical model (1)', Int. J. Solids Struct., 40(5), 1265-1280   DOI   ScienceOn
22 Lefik, M. and Schrefler, B.A. (2002), 'Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading', Comput. Stntct., 80(22), 1699-1713   DOI   ScienceOn
23 Contro, R., Maier, G. and Zavelani, A. (1975), 'Inelastic analysis of suspension structures by nonlinear programming', Comput. Meth. Appl. Mech. Eng., 5(1), 127-143   DOI   ScienceOn
24 Kassimali, A. and Parsi-Feraidoonian, H. (1987), 'Strength of cable trusses under combined loads', J. Struct. Eng., ASCE, 113(5), 907-924   DOI   ScienceOn
25 Brew, J.S. and Lewis, W.J. (2003), 'Computational form-finding of tension membrane structures - Non-finite element approaches: Part 1. Use of cubic splines in finding minimal surface membranes', Int. J. Numer. Meth. Eng., 56(5), 651-668   DOI   ScienceOn
26 Saafan, S.A. (1970), 'Theoretical analysis of suspension roofs', J. Struct. Div., ASCE, 96(2), 393-405
27 Contri, L. and Schrefler, B.A. (1977), 'A stability investigation of cable suspended pipelines', Int. J. Numer. Meth. Eng., 11(3), 521-531   DOI   ScienceOn
28 Volokh, K.Yu., Vilnay, O. and Averbuh, L. (2003), 'Dynamics of cable structures', J. Eng. Mech., 129(2), 175-180   DOI   ScienceOn
29 Cheng, J., Xiao, R. and Jiang, J. (2004), 'Probabilistic determination of initial cable forces of cable-stayed bridges under dead loads', Struct. Eng. Mech., An Int. J., 17(2)., 267-279   DOI   ScienceOn
30 Tezcan, S.S. (1968), 'Discussion of 'Numerical solution of nonlinear structures', by T.J. Poskitt, J. Struct. Div., ASCE, 94(6), 1613-1623
31 Kwan, A.S.K. (2003), 'Analysis of geometrically nonlinear cable structures', In: Progress in Civil and Stntctural Engineering Computing, B.H.V. Topping (Editor), Saxe-Coburg Publications, Stirling, Scotland, 149-170
32 Zhou, B, Accorsi, M.L. and Leonard, J.W. (2004), 'Finite element formulation for modeling sliding cable elements', Comput. Struct., 82(2-3), 271-280   DOI   ScienceOn
33 AI-Quassab, M. and Nair, S. (2003), 'Wavelet-Galerkin method for free vibrations of elastic cable', J. Eng. Mech., 129(3), 350-357   DOI   ScienceOn
34 Schrefler, B.A., Odorizzi, S. and Wood, R.D. (1983) 'A total lagrangian geometrically non-linear analysis of combined beam and cable structures', Comput. Stntct., 17(1), 115-127   DOI   ScienceOn
35 Gasparini, D. and Gautam, V. (2002), 'Geometrically nonlinear static behavior of cable structures', J. Struct. Eng., ASCE, 128(10), 1317-1329   DOI   ScienceOn
36 Lewis, W.J. (2003), Tension Stntctures: Form and Behaviour, Thomas Telford, Warwick
37 Buchholdt, H.A. (1998), Introduction to Cable Roof Structures, 2nd edition, Cambridge University Press, Cambridge
38 Cannarozzi, M. (1987), 'A minimum principle for tractions in the elastostatics of cable networks', Int. J. Solids Struct., 23(1), 551-568   DOI   ScienceOn
39 COSMOS/M User's Manual - Version Geostar 2.8. (2002), Structural Research Analysis Centre, Los Angeles