• Title/Summary/Keyword: non-destructive analysis

Search Result 554, Processing Time 0.023 seconds

Differentiation of Beef and Fish Meals in Animal Feeds Using Chemometric Analytic Models

  • Yang, Chun-Chieh;Garrido-Novell, Cristobal;Perez-Marin, Dolores;Guerrero-Ginel, Jose E.;Garrido-Varo, Ana;Cho, Hyunjeong;Kim, Moon S.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.2
    • /
    • pp.153-158
    • /
    • 2015
  • Purpose: The research presented in this paper applied the chemometric analysis to the near-infrared spectral data from line-scanned hyperspectral images of beef and fish meals in animal feeds. The chemometric statistical models were developed to distinguish beef meals from fish ones. Methods: The meal samples of 40 fish meals and 15 beef meals were line-scanned to obtain hyperspectral images. The spectral data were retrieved from each of 3600 pixels in the Region of Interest (ROI) of every sample image. The wavebands spanning 969 nm to 1551 nm (across 176 spectral bands) were selected for chemometric analysis. The partial least squares regression (PLSR) and the principal component analysis (PCA) methods of the chemometric analysis were applied to the model development. The purpose of the models was to correctly classify as many beef pixels as possible while misclassified fish pixels in an acceptable amount. Results: The results showed that the success classification rates were 97.9% for beef samples and 99.4% for fish samples by the PLSR model, and 85.1% for beef samples and 88.2% for fish samples by the PCA model. Conclusion: The chemometric analysis-based PLSR and PCA models for the hyperspectral image analysis could differentiate beef meals from fish ones in animal feeds.

A Study on the Metallurgical Characteristics for Sand Iron Ingot Reproduced by the Traditional Iron-making Method on Ancient Period under the Neutron Imaging Analysis (중성자 영상 분석을 활용한 고대 제철법 재현 사철강괴의 금속학적 특성 연구)

  • Cho, Sung Mo;Kim, Jong Yul;Sato, Hirotaka;Kim, TaeJoo;Cho, Nam Chul
    • Journal of Conservation Science
    • /
    • v.35 no.6
    • /
    • pp.631-640
    • /
    • 2019
  • The purpose of this study was to compare analytical results of sand iron bars reproduced by the traditional iron-making method through a destructive analysis and a non-destructive analysis. For these studies, we produced two types of samples. One was sample(SI-A), a part of the sand iron bar for destructive analysis. The other was SI-B(9 ㎠) for non-destructive analysis. A metallurgical microscope and scanning electron microscope were used for the destructive analysis, and neutron imaging analysis with the Hokkaido University Neutron Source (HUNS) at Hokkaido University, Japan, was used for the non-destructive analysis. The results obtained by destructive analysis showed that there was ferrite and pearlite of fine crystallite size, and some of these showed Widmanstätten ferrite microstructure grown within the pearlite and coarse ferrite at the edge of the specimen. The results from the neutron imaging analysis showed that there was also ferrite and pearlite with 3 ㎛ α-Fe of BCC structure. Based on these results, neutron imaging analysis is capable of identifying material characteristics without destroying the object and obtaining optimal research results when applying it to objects of cultural heritage.

In situ dynamic investigation on the historic "İskenderpaşa" masonry mosque with non-destructive testing

  • Gunaydin, Murat
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Turkey is a transcontinental country located partly in Asia and partly in Europe, and hosted by diverse civilizations including Hittite, Urartu, Lydia, Phrygia, Pontius, Byzantine, Seljuk's and Ottomans. At various times, these built many historic monuments representing the most significant characteristics of their civilizations. Today, these monuments contribute enormously to the esthetic beauty of environment and important to many cities of Turkey in attracting tourism. The survival of these monuments depends on the investigation of structural behavior and implementation of needed repairing and/or strengthening applications. Hence, many countries have made deeper investigations and regulations to assess their monuments' structural behavior. This paper presents the dynamic behavior investigation of a monumental masonry mosque, the "İskenderpaşa Mosque" in Trabzon (Turkey), by performing an experimental examination with non-destructive testing. The dynamic behavior investigation was carried out by determining the dynamic characteristic called as natural frequencies, mode shapes and damping ratios. The experimental dynamic characteristics were extracted by Operational Modal Analysis (OMA). In addition, Finite Element (FE) model of masonry mosque was constructed in ANSYS software and the numerical dynamic characteristics such as natural frequencies and mode shapes were also obtained and compared to experimental ones. The paper aims at presenting the non-destructive testing procedure of a masonry mosque as well as the comparison of experimental and numerical dynamic characteristics obtained from the mosque.

Predicting the unconfined compressive strength of granite using only two non-destructive test indexes

  • Armaghani, Danial J.;Mamou, Anna;Maraveas, Chrysanthos;Roussis, Panayiotis C.;Siorikis, Vassilis G.;Skentou, Athanasia D.;Asteris, Panagiotis G.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.317-330
    • /
    • 2021
  • This paper reports the results of advanced data analysis involving artificial neural networks for the prediction of the unconfined compressive strength of granite using only two non-destructive test indexes. A data-independent site-independent unbiased database comprising 182 datasets from non-destructive tests reported in the literature was compiled and used to train and develop artificial neural networks for the prediction of the unconfined compressive strength of granite. The results show that the optimum artificial network developed in this research predicts the unconfined compressive strength of weak to very strong granites (20.3-198.15 MPa) with less than ±20% deviation from the experimental data for 70% of the specimen and significantly outperforms a number of available models available in the literature. The results also raise interesting questions with regards to the suitability of the Pearson correlation coefficient in assessing the prediction accuracy of models.

Relationship between porcine carcass grades and estimated traits based on conventional and non-destructive inspection methods

  • Lim, Seok-Won;Hwang, Doyon;Kim, Sangwook;Kim, Jun-Mo
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.155-165
    • /
    • 2022
  • As pork consumption increases, rapid and accurate determination of porcine carcass grades at abattoirs has become important. Non-destructive, automated inspection methods have improved slaughter efficiency in abattoirs. Furthermore, the development of a calibration equation suitable for non-destructive inspection of domestic pig breeds may lead to rapid determination of pig carcass and more objective pork grading judgement. In order to increase the efficiency of pig slaughter, the correct estimation of the automated-method that can accommodate the existing pig carcass judgement should be made. In this study, the previously developed calibration equation was verified to confirm whether the estimated traits accord with the actual measured traits of pig carcass. A total of 1,069,019 pigs, to which the developed calibration equation, was applied were used in the study and the optimal estimated regression equation for actual measured two traits (backfat thickness and hot carcass weight) was proposed using the estimated traits. The accuracy of backfat thickness and hot carcass weight traits in the estimated regression models through stepwise regression analysis was 0.840 (R2) and 0.980 (R2), respectively. By comparing the actually measured traits with the estimated traits, we proposed optimal estimated regression equation for the two measured traits, which we expect will be a cornerstone for the Korean porcine carcass grading system.

Molecular identification of selected parrot eggs using a non-destructive sampling method

  • Jung-Il Kim;Jong-Won Baek;Chang-Bae Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.2
    • /
    • pp.145-166
    • /
    • 2023
  • Parrots have been threatened by global trade to meet their high demand as pets. Controlling parrot trade is essential because parrots play a vital role in the ecosystem. Accurate species identification is crucial for controlling parrot trade. Parrots have been traded as eggs due to their advantages of lower mortality rates and more accessible transport than live parrots. A molecular method is required to identify parrot eggs because it is difficult to perform identification using morphological features. In this study, DNAs were obtained from 43 unidentified parrot eggs using a non-destructive sampling method. Partial cytochrome b (CYTB) gene was then successfully amplified using polymerase chain reaction (PCR) and sequenced. Sequences newly obtained in the present study were compared to those available in the GenBank by database searching. In addition, phylogenetic analysis was conducted to identify species using available sequences in GenBank along with sequences reported in previous studies. Finally, the 43 parrot eggs were successfully identified as seven species belonging to two families and seven genera. This non-destructive sampling method for obtaining DNA and molecular identification might help control the trade of parrot eggs and prevent their illegal trade.

Determination of Protein Content in Pea by Near Infrared Spectroscopy

  • Lee, Jin-Hwan;Choung, Myoung-Gun
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.60-65
    • /
    • 2009
  • Near infrared reflectance spectroscopy (NIRS) was used as a rapid and non-destructive method to determine the protein content in intact and ground seeds of pea (Pisum sativum L.) germplasms grown in Korea. A total of 115 samples were scanned in the reflectance mode of a scanning monochromator at intact seed and flour condition, and the reference values for the protein content was measured by auto-Kjeldahl system. In the developed ground and intact NIRS equations for analysis of protein, the most accurate equation were obtained at 2, 8, 6, 1 math treatment conditions with standard normal variate and detrend scatter correction method and entire spectrum (400-2,500 nm) by using modified partial least squares regression (n=78). External validation (n=34) of these NIRS equations showed significant correlation between reference values and NIRS estimated values based on the standard error of prediction (SEP), $R^2$, and the ratio of standard deviation of reference data to SEP. Therefore, these ground and intact NIRS equations can be applicable and reliable for determination of protein content in pea seeds, and non-destructive NIRS method could be used as a mass analysis technique for selection of high protein pea in breeding program and for quality control in food industry.

Performance Evaluation of a Method to Improve Fairness in In-Vehicle Non-Destructive Arbitration Using ID Rotation

  • Park, Pusik;Igorevich, Rustam Rakhimov;Yoon, Jongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.5098-5115
    • /
    • 2017
  • A number of automotive electronics-safety, driver assistance, and infotainment devices-have been deployed in recent vehicles. This raises new challenges regarding in-vehicular network arbitration. A performance analysis of non-destructive arbitration has revealed a fairness issue. The arbitration prioritizes without collisions, despite multiple simultaneous transmissions; however, the performances of the highest priority node and the lowest priority node are very different. In this paper, an ID-rotation arbitration method to solve the arbitration-fairness problem is proposed. The proposed algorithm was applied to several engine control units (ECUs), including a controller area network (CAN) controller. Experimental results showed that the algorithm improved the fairness as well as the total throughput within a specific performance constraint.

The present condition and problems of non-destructive investigation methods for cultural property (문화재 비파괴 분석법의 현황과 문제점)

  • Kang, Dai-Iil;Hong, Jong-Wook
    • 보존과학연구
    • /
    • s.19
    • /
    • pp.35-60
    • /
    • 1998
  • Cultural properties are valuable objects, which have exposed insevere environment and inherited for a long time but we don’t have correct information concerning materials, structure and skill of manufacture. Because the cultural properties have been destroyed by the deterioration elements as like wind, this must be carefully treated for investigation of exhibition and storage. Even if the observation is scientific research, we must not take actual sample from the object for obtaining information concerning the nature materials and skill of manufacture. so it is elementary principle to use non-destructive investigation method as analytical methods for cultural property. This contribution discusses the present condition and problem of X-ray fluorescence acting as a representative non-destructive investigation method and the difference of statistics to be connected with determination and finally explains the intend facts for analysis of data.

  • PDF

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF