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Abstract
As pork consumption increases, rapid and accurate determination of porcine carcass grades 
at abattoirs has become important. Non-destructive, automated inspection methods have 
improved slaughter efficiency in abattoirs. Furthermore, the development of a calibration 
equation suitable for non-destructive inspection of domestic pig breeds may lead to rapid de-
termination of pig carcass and more objective pork grading judgement. In order to increase 
the efficiency of pig slaughter, the correct estimation of the automated-method that can ac-
commodate the existing pig carcass judgement should be made. In this study, the previously 
developed calibration equation was verified to confirm whether the estimated traits accord 
with the actual measured traits of pig carcass. A total of 1,069,019 pigs, to which the devel-
oped calibration equation, was applied were used in the study and the optimal estimated re-
gression equation for actual measured two traits (backfat thickness and hot carcass weight) 
was proposed using the estimated traits. The accuracy of backfat thickness and hot carcass 
weight traits in the estimated regression models through stepwise regression analysis was 
0.840 (R2) and 0.980 (R2), respectively. By comparing the actually measured traits with the 
estimated traits, we proposed optimal estimated regression equation for the two measured 
traits, which we expect will be a cornerstone for the Korean porcine carcass grading system.
Keywords: Porcine carcass, Backfat thickness, Carcass weight, Meat grading, Non-destructive
 inspection method

INTRODUCTION
Pork is the most consumed meat in the world, and has long established its position as a staple food 
on the market [1]. Consumption of pork is growing rapidly and steadily in the Asian market [2]. To 
accommodate this growth, the Animal Products Grading Service (APGS) has been established in 
South Korea, resulting in changes in the livestock product industry. The introduction of the APGS 
has led to reliable meat distribution and reasonable prices between consumers and suppliers, providing 
various options of meat cuts and quality [3]. Pork grade information allows consumers to purchase pork 
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at a desired price and increases the production of high-grade pork due to the preference of higher 
grades [4]. Thus, for the production and consumption of high-quality pork, the accuracy of pig 
carcass grading service has become important.

As pork consumption increases, the number of abattoirs slaughtering more than 300 pigs per 
hour rises owing to modernisation and scale-up of slaughter facilities [5]. The increased rate of 
slaughter in abattoirs has raised the need for rapid and accurate judgement of pig carcasses. Efforts 
to improve pig carcass judgement have been conducted worldwide through the use of devices that 
can estimate the lean meat percentage (LMP) of pig carcasses, such as Fat-O-Meat’er (FOM), 
UltraFOM (UFOM), AutoFOM, and Vision-Based Video Image Analyzer (VCS2000) [6–9]. 
Accordingly, in Korea, non-destructive automated inspection methods, such as the AutoFOM and 
VCS2000 systems, have been implemented to improve slaughter efficiency in abattoirs. AutoFOM 
uses the reflectance of ultrasound to automatically measure LMP and fat thickness [10]. VCS2000 
system is an image processing-based method that automatically detects the LMP of half carcasses, 
capable of measuring pig carcass at an average speed of more than 600 heads per hour [11]. Both 
non-destructive automated inspection methods for predicting the LMP of a pig carcass passed 
European standards, but the AutoFOM method showed a lower error rate [12]. Nevertheless, the 
VCS2000 image processing-based system can automatically detect the LMP of half pig carcasses 
at high speed [13]. For the efficient calculation of LMP using the VCS2000 system, a calibration 
equation must be developed from the carcass image parameters. However, because the calibration 
equation is influenced by the breed and genetic difference of pigs, the existing European equation 
is not effective for use in Korea [8]. For the effective calculation of LMP utilising the VCS2000 
system, a calibration equation for Korean pig breeds is required. Therefore, a calibration equation 
was developed to the estimation of LMP in Korean whole pig carcasses and lean meat yield of 
their primal cuts, which is expected to improve the speed, accuracy, and objectiveness of pig carcass 
judgement [14].

An automated, LMP-based system for pig carcass has been applied in some abattoirs to improve 
the efficiency of pig slaughter and to obtain objective grading parameters [5]. Domestic pig 
carcass grading is determined by carcass quality and meat quality, including 21 parameters: backfat 
thickness (BFT), hot carcass weight (CWT), sex, appearance, meat quality, and defects [15]. Non-
destructive method estimated lean meat yield of pig carcass including BFT and CWT, as well as 
allow for more objective pork grading than conventional manual judgement. Therefore, in order to 
increase the efficiency of pig slaughter through the non-destructive method, the correct estimation 
of the automated method that can accommodate the existing pig carcass judgement should be made.

In the present study, we aimed to identify whether the estimated traits accord with the actual 
measured traits through verifying the previously developed calibration equation. The accuracy of 
the developed calibration equation based on the relationship between the measured traits (BFT 
and CWT) and the estimated traits was evaluated considering the effects of sex, abattoir, and 
season that affect actual slaughter. Furthermore, the optimal estimated regression equation for 
the measured BFT and CWT traits was formulated. Through this, it is possible to reconsider the 
efficiency in actual abattoirs, and it is expected that can be used as a parameters for more objective 
grading judgement.

MATERIALS AND METHODS
Animals
A total of 1,069,019 Landrace × Yorkshire × Duroc (LYD) pigs (524,001 females, 6,444 males, 
and 538,574 castrated males) slaughtered between January and December 2019 were assessed in 
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this study. All the pigs were slaughtered at three abattoirs following standard procedures under the 
supervision of the Korean Grading Service for Animal Products. BFT and CWT were measured 
immediately after slaughter. BFT was measured with ruler at the 11th/12th thoracic vertebrae and 
the 14th thoracic vertebra/1st lumbar vertebra on the left half of each carcass, and the average of 
two measurements was used for analysis.

Traits estimated using non-destructive method
The traits of pig carcasses were estimated to non-destructive automated inspection method using 
the VCS2000 system (E+V Tehchnology GmbH & Co.KG, Oranienburg, Germany). VCS2000 
non-destructive method calculates the LMP in half carcass through video image systems [7]. 
However, because the variables measured by VCS2000 is influenced by the breed and genetic 
difference of pigs, efficient LMP prediction requires a calibrated equation [8]. Therefore, the traits 
of pig carcasses were estimated by applying the calibration equation developed for estimating 
the LMP and lean meat yield of Korean pig carcasses [14]. A total of 46 traits of main cuts 
were estimated using the non-destructive inspection method, and the estimated traits were then 
divided into five categories: 5 BFT-related traits (BFT, BFT in the 11th/12th thoracic vertebrae 
[BFT11/12], BFT in the 14th thoracic vertebra/1st lumbar vertebra [BFT14/1], BFT in the 
7th multifidus muscle, and BFT in the 1st/2th thoracic vertebrae), 21 major cut-related traits 
(rib weight, rib trim weight, rib meat weight, neck weight, neck trim weight, neck meat weight, 
shoulder weight [SWT], shoulder trim weight, shoulder meat weight, tenderloin weight, tenderloin 
trim weight, tenderloin meat weight, belly weight, belly trim weight, belly meat weight, loin weight 
[LWT], loin trim weight, loin meat weight, ham weight, ham trim weight, and ham meat weight), 
5 pork belly-related traits (belly fat weight, belly rate, belly trim rate, 10-cm neck fat thickness, and 
intra-fat thickness), 10 traits related to other parts (CWT, front weight [FWT], middle weight 
[MWT], rear weight, foreshank weight, front meat weight, diaphragm weight, middle meat weight, 
hindshank weight, and rear meat weight), and 5 total traits (total skin weight, total fat weight, total 
bone weight [TBWT], total meat weight, and LMP).

Statistical analysis
The SAS 9.4 statistical software package (SAS Institute, Cary, NC, USA) was used to calculate 
the mean, standard deviation, and range of the measured (BFT and CWT) and estimated traits of 
pig carcasses. Pearson correlation coefficients [16] were used to assess the relationship between two 
measured traits (BFT and CWT) and 46 estimated traits.

Analysis of variance [17] was performed using the general linear model in SAS to simultaneously 
consider three fixed effects (abattoir, sex, and season) in the optimal estimated regression equation. 
The fixed effects comprised 3 abattoirs (abattoir A, B, and C), 3 sexes (females, males, and castrated 
males), and 2 seasons (summer and non-summer). Seasons were divided into summer ( June, 
July, and August) and non-summer to consider the relationship between the high temperature in 
summer and productivity [18]. Differences in the measured traits (BFT and CWT) according 
to each fixed effect were analysed using t-tests [19], which was used to compare means between 
groups and to determine whether the differences in means were statistically significant [20].

The 46 estimated traits for the two measured traits (BFT and CWT) were further subjected to 
stepwise regression analysis [21] using the REG procedure in SAS. The inclusion or exclusion of 
significant traits was set to a common level (p < 0.001). The model was y = β0 + Xb + βnXb + є, where 
y is the measured trait; β0 is the general intercept; in Xb, X is the design matrix of a fixed effect and 
b is the fixed effect (abattoir, sex, and season); in βnXb, βn is the estimated regression coefficient for 
each estimated trait and Xb is the estimated trait; and є is the model error. For each dependent 
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variable, the top three estimated traits that could sufficiently describe the model by considering the 
coefficient of determination (R2) were used in the final estimated regression model. Each of the 
top three estimated traits, which could better explain the relationship between the estimated traits 
for measured BFT and CWT, was used in the simple linear regression model. The accuracy of the 
estimated regression model was represented by R2 and residual standard deviation. The scatter plots 
with four pork grades were added to the simple regression model for measured BFT and CWT 
traits, which are parameters used for pork grading judgement.

RESULTS
Measured and estimated traits of porcine carcasses
Basic statistical analysis results for the two measured traits (BFT and CWT) and 46 estimated 
traits are presented in Table 1. The mean, standard deviation, minimum values, and maximum 
values of the measured and estimated traits were calculated for each abattoir. Analysis of variance 
demonstrated a significant difference (p < 0.001) in the two measured traits between the three fixed 
effects (Supplementary Table S1). The quartile range of each fixed effect on the measured trait was 
visualised in a boxplot (Fig. 1). All three fixed effects showed a significant difference (p < 0.001) 
in both measured traits. The mean values of measured BFT according to each fixed effect was 
calculated (abattoir A = 23.282, abattoir B = 22.844, abattoir C = 22.602; female = 21.534, male 
= 18.238, castrated male = 24.386; summer = 23.342, and non-summer = 22.822). Likewise, the 
mean values of measured CWT were calculated according to each fixed effect (abattoir A = 90.195, 
abattoir B = 86.777, abattoir C = 88.419; female = 88.374, male = 86.621, castrated male = 88.536; 
summer = 87.374, and non-summer = 88.797).

Correlations between measured and estimated traits
The correlations between the two measured traits (BFT and CWT) and 46 estimated traits were 
visualised as a heat map (Fig. 2). The results of correlation analysis established a close relationship 
between the estimated traits and measured BFT trait in all three abattoirs: estimated BFT (abattoir 
A, R = 0.906; abattoir B, R = 0.900; and abattoir C, R = 0.941), estimated BFT14/1 (abattoir A, R 
= 0.873; abattoir B, R = 0.855; and abattoir C, R = 0.901), and estimated BFT11/12 (abattoir A, R 
= 0.852; abattoir B, R = 0.805; and abattoir C, R = 0.878). Moreover, correlation analysis verified 
a close relationship between the estimated traits and measured CWT trait in all three abattoirs: 
estimated SWT (abattoir A, R = 0.944; abattoir B, R = 0.949; and abattoir C, R= 0.938), estimated 
FWT (abattoir A, R = 0.936; abattoir B, R = 0.942; and abattoir C, R = 0.943), and estimated 
MWT (abattoir A, R = 0.936; abattoir B, R = 0.941; and abattoir C, R = 0.933). The measured 
traits and estimated traits showed significant correlation in all three abattoirs (p < 0.001), except for 
correlation between measured BFT trait and estimated diaphragm weight trait at abattoir C (p = 
0.737, Supplementary Table S2).

Estimated regression models
Stepwise regression analysis was performed using measured traits (BFT and CWT) as dependent 
variables (Supplementary Table S3 and S4). Through partial and model R2 in the entire estimated 
regression models (R2 = 0.840), the top three estimated traits (BFT, LWT, and TBWT) could 
sufficiently predict the measured BFT trait. Likewise, it was demonstrated that the top three 
estimated traits (SWT, LWT, and FWT) could predict measured CWT traits in the overall 
estimated regression models (R2 = 0.980). The estimated regression models for measured BFT (1) 
and CWT (2) traits with three fixed effects were as follows (Table 2):
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Table 1. The mean, SD, minimum (Min), and maximum (Max) values of measured and estimated traits of pig carcasses in all abattoirs

　
Abattoir A (N = 400,280) Abattoir B (N = 416,092) Abattoir C (N =252,647)

Mean SD Min Max Mean SD Min Max Mean SD Min Max
Measured traits 　 　 　 　 　 　 　 　 　 　 　 　

Backfat thickness (mm) 23.282 4.894 0.000 56.000 22.844 4.971 3.000 55.000 22.602 4.790 0.000 77.000

Carcass weight (kg) 90.195 6.568 37.000 154.000 86.777 7.268 35.000 140.000 88.419 6.151 38.000 130.000

Estimated traits 　 　 　 　 　 　 　 　 　 　 　 　

Backfat thickness (mm) 23.398 4.878 5.000 45.000 23.181 4.910 5.000 45.000 22.672 4.645 5.000 43.000

Backfat thickness in the 11th/ 
12th thoracic vertebra (mm)

24.775 5.018 5.000 48.000 23.343 5.085 5.000 48.000 23.234 4.946 5.000 48.000

Backfat thickness in the 14th 
thoracic vertebra/1st lumbar 
vertebra (mm)

23.051 4.759 5.000 45.000 23.014 4.516 5.000 45.000 22.119 4.646 5.000 45.000

Backfat thickness in the 7th 
multifidus muscle (mm)

17.814 4.951 3.000 44.000 18.011 4.686 3.000 45.000 16.283 4.621 3.000 41.000

Backfat thickness in the 1st/ 
2th thoracic vertebra (mm)

39.030 4.759 20.000 64.000 38.283 4.962 19.000 64.000 38.461 4.760 19.000 64.000

Carcass weight (kg) 92.628 7.874 54.000 115.200 88.157 7.601 54.000 115.200 89.290 6.811 54.000 115.200

Front weight (kg) 27.648 1.984 18.162 34.838 26.381 2.198 18.162 34.838 27.618 1.866 18.162 34.838

Middle weight (kg) 33.836 3.117 21.206 47.104 32.502 3.308 21.206 47.104 32.650 2.805 21.206 47.104

Rear weight (kg) 26.086 1.914 16.792 32.728 25.604 2.074 16.792 32.728 25.574 1.764 16.792 32.728

Rib weight (kg) 3.969 0.350 2.090 5.476 3.845 0.382 2.090 5.476 4.034 0.314 2.090 5.476

Rib trim weight (kg) 3.053 0.264 1.306 4.028 2.857 0.269 1.306 4.028 2.971 0.248 1.306 4.028

Rib meat weight (kg) 2.270 0.208 0.993 3.155 2.164 0.210 0.993 3.155 2.243 0.207 0.993 3.155

Neck weight (kg) 5.927 0.437 3.470 7.662 5.525 0.482 3.470 7.662 5.855 0.424 3.470 7.662

Neck trim weight (kg) 4.669 0.365 2.823 5.975 4.423 0.400 2.823 5.975 4.605 0.336 2.823 5.975

Neck meat weight (kg) 3.495 0.259 1.836 4.800 3.385 0.291 1.836 4.800 3.469 0.251 1.836 4.800

Shoulder weight (kg) 11.897 0.954 6.959 15.557 11.421 1.094 6.959 15.557 11.651 0.890 6.959 15.557

Shoulder trim weight (kg) 8.673 0.667 5.170 11.356 8.252 0.730 5.170 11.356 8.434 0.635 5.170 11.356

Shoulder meat weight (kg) 6.357 0.545 3.566 9.082 6.186 0.582 3.566 9.082 6.373 0.510 3.566 9.082

Foreshank weight (kg) 1.846 0.175 0.848 2.618 1.801 0.215 0.848 2.618 1.907 0.156 0.848 2.618

Front meat weight (kg) 14.561 1.294 8.635 19.657 14.013 1.340 8.635 19.657 14.352 1.197 8.635 19.657

Tenderloin weight (kg) 1.692 0.134 0.871 2.269 1.636 0.143 0.871 2.269 1.635 0.125 0.871 2.269

Tenderloin trim weight (kg) 1.095 0.093 0.513 1.595 1.064 0.099 0.513 1.595 1.083 0.089 0.513 1.595

Tenderloin meat weight (kg) 1.085 0.113 0.482 1.650 1.070 0.117 0.482 1.650 1.049 0.103 0.482 1.650

Belly weight (kg) 16.893 1.728 9.566 23.688 15.927 1.798 9.566 23.688 15.926 1.558 9.566 23.688

Belly trim weight (kg) 11.864 1.140 6.692 16.584 11.446 1.254 6.692 16.584 11.403 1.022 6.692 16.584

Belly meat weight (kg) 7.879 0.654 4.104 10.564 7.546 0.712 4.104 10.564 7.627 0.602 4.104 10.564

Belly fat weight (kg) 4.074 0.925 0.488 8.552 3.879 0.833 0.488 8.552 3.942 0.804 0.488 8.552

Belly rate (%) 47.616 4.333 25.980 67.360 47.396 3.844 25.980 67.360 46.922 3.856 25.980 67.360

Belly trim rate (%) 66.362 5.185 40.450 89.840 67.939 4.888 40.450 89.840 67.669 4.801 40.590 89.840

10-cm neck fat thickness (mm) 19.944 4.436 4.000 43.000 20.233 4.212 4.000 43.000 20.166 4.019 4.000 43.000

Intra-fat thickness (mm) 5.384 1.514 1.000 21.000 5.387 1.475 1.000 22.000 5.959 1.399 1.000 22.000

Diaphragm weight (kg) 0.299 0.026 0.168 0.418 0.296 0.028 0.168 0.418 0.296 0.023 0.168 0.418

Loin weight (kg) 10.086 0.961 5.649 14.479 9.663 1.002 5.649 14.479 9.750 0.877 5.649 14.479

Loin trim weight (kg) 7.926 0.683 4.228 11.208 7.699 0.717 4.228 11.208 7.897 0.652 4.228 11.208

Loin meat weight (kg) 7.085 0.719 3.070 10.274 6.719 0.715 3.070 10.274 6.741 0.620 3.070 10.274

Middle meat weight (kg) 17.591 1.367 9.872 23.380 17.022 1.532 9.872 23.380 17.228 1.279 9.872 23.380

Ham weight (kg) 19.728 1.514 11.561 25.419 19.427 1.686 11.561 25.419 19.178 1.391 11.561 25.419
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y = 1.298 (β0) + 0.781 (BFT) + 0.829 (LWT) − 0.970 (TBWT) + 0.033(є), (R2 = 0.840) - (1)
y = 6.185 (β0) + 2.419 (SWT) + 2.759 (LWT) − 1.003 (FWT) + 0.013(є), (R2 = 0.980) - (2)

To better elucidate the relationship between the measured and estimated traits, a simple linear 
regression model describing each of the top three estimated traits was generated and visualised as 
a dot plot, as shown in Fig. 3. The accuracy of the model for measured BFT trait was determined 
using simple linear regression analysis (BFT, R2 = 0.8301; LWT, R2 = 0.3597; TBWT, R2 = 0.0686). 
The model was also evaluated for accuracy in measured CWT trait using simple linear regression 

Table 1. Continued

　
Abattoir A (N = 400,280) Abattoir B (N = 416,092) Abattoir C (N =252,647)

Mean SD Min Max Mean SD Min Max Mean SD Min Max
Ham trim weight (kg) 16.603 1.458 9.554 22.436 16.141 1.449 9.554 22.436 15.967 1.275 9.554 22.436

Ham meat weight (kg) 14.477 1.374 8.032 20.596 14.144 1.297 8.032 20.596 13.872 1.212 8.032 20.596

Hindshank weight (kg) 2.381 0.193 1.376 3.032 2.260 0.194 1.376 3.032 2.317 0.179 1.376 3.032

Rear meat weight (kg) 16.634 1.383 9.285 23.311 16.063 1.414 9.285 23.311 16.138 1.262 9.285 23.311

Total skin weight (kg) 6.308 0.352 4.321 8.115 6.127 0.402 4.321 8.115 6.113 0.343 4.321 8.115

Total fat weight (kg) 24.105 4.153 6.742 45.354 22.713 4.085 6.742 45.354 22.937 3.887 6.742 45.354

Total bone weight (kg) 5.854 0.445 3.689 8.003 5.667 0.436 3.689 8.003 5.783 0.422 3.689 8.003

Total meat weight (kg) 48.299 3.865 29.298 64.838 47.492 4.604 29.298 64.838 47.812 3.806 29.298 64.838

Lean meat percentage (%) 55.983 3.811 38.060 71.850 56.984 3.674 38.060 71.850 55.468 3.439 38.060 71.850

Fig. 1. Boxplots showing that differences in measured two traits (backfat thickness and carcass weight) according to each fixed effect. T-test, ***p 
< 0.001. A, B, and C represent the effects of abattoir, sex, and season on backfat thickness, respectively. D, E, and F represent the effects of abattoir, sex, and 
season effects for carcass weight, respectively. The horizontal line in the box represents the median, and the red rhombus indicates the mean.
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Fig. 2. Heatmap showing the correlations between the two measured trait (backfat thickness and 
carcass weight) and the 46 estimated traits. Colour scale bar from red to blue represents the degree of 
correlation coefficients. Yellow border indicates estimated traits that exhibiting the highest correlation coefficients 
with measured backfat thickness trait in all abattoirs. Green border indicates estimated traits that showing the 
highest correlation coefficients with measured carcass weight trait in all abattoirs. Data source for the plots can 
be found in Supplementary Table S2.

Table 2. The top three estimated traits that can predict measured traits according to the stepwise regression analysis

Step Traits 
(Y =) Abattoir Sex Season

Backfat 
thickness 

(X11))

Loin 
weight 
(X21))

Total bone 
weight 
(X31))

Shoulder 
weight 
(X12))

Loin 
weight 
(X22))

Front 
weight 
(X32))

Intercept Standard 
error R2

1 Backfat 
thickness

−0.034 0.250 0.289 0.911 – – – – – 0.923 0.014 0.833

2 0.028 0.283 0.218 0.859 0.408 – – – – −1.953 0.022 0.837

3 0.033 0.276 0.223 0.781 0.829 −0.970 – – – 1.298 0.033 0.840

1 Carcass 
weight

−0.111 −0.025 −0.350 – – – 6.447 – – 14.185 0.027 0.899

2 0.105 −0.236 0.102 – – – 4.166 3.029 – 10.181 0.016 0.967

3 −0.088 −0.156 0.090 – – – 2.419 2.759 1.003 6.185 0.013 0.980
1) Partial regression coefficients for backfat thisckness.
2) Partial regression coefficients for carcass weight.
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analysis (SWT, R2 = 0.8978; LWT, R2 = 0.8178; and FWT, R2 = 0.8741). As shown in Fig. 3, the 
four pork grades were marked with different colours, and it was confirmed that the higher grades 
were distributed in the centre.

DISCUSSION
The introduction of an automated-system increase the efficiency of pig slaughter and allow for 
more objective pork grading rather than conventional manual judgement. In order to increase the 
efficiency of the pig carcass automated-system, an accurate estimation of the automated-method 
that can accommodate the existing pig carcass judgement is required. Therefore, the current study 
verified previously developed calibration equation [14]. The models were based on the relationship 
between the 46 estimated traits using a non-destructive method and the actual two measured 
traits (BFT and CWT). We established, using correlation analysis, that measured BFT trait had 
a high correlation with estimated BFT-related traits (BFT, BFT11/12, and BFT14/1). Actually 
measured BFT trait was calculated as the average of measured BFT11/12 and BFT14/1 [15], and 
these two BFT-related traits have been shown as high estimated traits for measured BFT trait. 
This showed that a model to which a developed calibration equation was applied could high predict 
the measured BFT trait [14]. Measured CWT trait showed a higher correlation with weight-
related estimated traits including SWT, FWT, and MWT traits than CWT trait (Supplementary 
Table S2). The calibration equation for the application of non-destructive inspection method was 

Fig. 3. Linear regression plots of measured traits (backfat thickness and carcass weight) versus estimated top three traits. The x-axis represents the 
estimated traits, whereas the y-axis represents the measured traits (A–C, backfat thickness; D–F, carcass weight). The colours in the linear regression plots 
represent scatter plots corresponding to four pork grades (1+, yellow; 1, red; 2, green; extra, blue).
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calculated using a relatively low number of animals (175 pigs) [14]. It seems that the CWT trait 
was not sufficiently estimated owing to the small sample size used in the previously developed 
equation. The measured BFT trait showed a high correlation with BFT-related estimated traits and 
our findings indicated that estimated traits are sufficiently predict of measured CWT trait, even 
though estimated traits are non-CWT-related traits.

Stepwise regression analysis was conducted to establish an optimal estimated regression model 
that could predict measured traits from estimated traits [22]. Unlike in the correlation analysis, 
fixed effects (abattoir, sex, and season) that may affect measurement during the actual slaughtering 
process were applied in the regression analysis [23]. It was established that the estimated regression 
models, which used measured BFT and CWT traits as dependent variables, could be sufficiently 
explained by 3 out of 46 estimated traits. The accuracy of measured BFT and CWT traits by the 
estimated regression model was 0.840 (R2) and 0.980 (R2), respectively. Through a simple linear 
regression model, the accuracy of each estimated trait for the measured traits (BFT and CWT) 
was confirmed. All of the estimated traits (SWT, LWT, and FWT) for the measured CWT trait 
showed relatively high accuracy, but in the measured BFT trait, except for the estimated BFT trait, 
estimated traits (LWT and TBWT) showed low accuracy. In the estimated regression model for 
measured BFT trait, estimated LWT and TBWT traits had lower partial R2 and did not present a 
significant difference in accuracy compared to the model with one estimated BFT trait. Whereas, 
for measured CWT trait, the model accuracy increased when estimated traits were included in the 
estimated regression model. Among the top three estimated traits used for measured CWT trait, 
estimated SWT and FWT traits had high R, even in correlation analysis. The estimated LWT trait, 
which was one of the top three estimated traits, was a common trait between the two measured 
traits. According to a previous report, loin content showed a close inverse relationship with BFT 
and lean meat content [24]. This finding on the effect of BFT and meat content on loin content 
ratio in carcasses showed that estimated LWT trait was closely related to both measured traits.

In order to increase the efficiency of pig slaughter and to obtain objective pig carcasses, an 
automated pork grading system based on LMP has been applied in some abattoirs. As accurate 
estimation of an automated-method that can accommodate the existing pig carcass judgement 
is required, the developed calibration equation that applied to the non-destructive automated 
inspection method was verified. The accuracy of the developed calibration equation was evaluated 
based on the relationship between the two measured traits (BFT and CWT) and the 46 estimated 
trait, and an optimal estimated regression equation for the two measured traits was formulated. 
Taken together, our findings suggest that estimated BFT-related traits can be used to predict actual 
BFT trait, and even use estimated traits that are non-CWT-related can sufficiently predict actual 
CWT trait.

In conclusion, the proposed optimal estimated regression equation is expected to improve 
the accuracy of pork grading in abattoirs through objective judgment. The developed estimated 
regression models can be widely implemented in other domestic abattoirs to improve pig carcass 
grading judgement system. We expect that this accurate prediction method using our estimated 
regression models will be a cornerstone for the Korean pig carcass grading system. Through this, 
it is possible to reconsider the efficiency in actual abattoirs, and it is expected that can be used as 
a parameters for more objective grading judgement. Furthermore, additional study is needed to 
increase the utilization of the other primal cuts.

SUPPLEMENTARY MATERIALS
Supplementary materials are only available online from: https://doi.org/10.5187/jast.2021.e133. 



Accuracy of non-destructive inspection method

164  |  https://www.ejast.org https://doi.org/10.5187/jast.2021.e133

REFERENCES
1. Szymańska EJ. The development of the pork market in the world in terms of globalization. J 

Agribus Rural Dev. 2017;46:843-50. https://doi.org/10.17306/J.JARD.2017.00362
2. Oh SH, Whitley NC. Pork production in China, Japan and South Korea. Asian-Australas J 

Anim Sci. 2011;24:1629-36. https://doi.org/10.5713/ajas.2011.11155
3. Hwang DY. Pork industry and the Animal Products Grading Service (APGS). KAPE Mag. 

111:4-7.
4. Tonsor GT, Schroeder TC. Economic needs assessment: pork quality grading system [Internet]. 

Prepared for the National Pork Board. 2013 [cited 2021 Sep 23]. https://wwwagmanager.info/
sites/default/files/pdf/EconomicNeedsAssessmentOfPorkQualityGradingSystem.pdf

5. Kim GT, Kang SJ, Yoon YG, Kim HS, Lee WY, Yoon SH. Introduction of automatic 
grading and classification machine and operation status in Korea. Food Sci Anim Resour Ind. 
2017;6:34-45.

6. Brøndum J, Egebo M, Agerskov C, Busk H. On-line pork carcass grading with the Autofom 
ultrasound system. J Anim Sci. 1998;76:1859-68. https://doi.org/10.2527/1998.7671859x

7. Daumas G, Causeur D. Tests d’homologation des appareils automatiques de classement des 
carcasses de porc. Journ Rech Porc. 2008;40:91-2.

8. Font i Furnols M, Engel B, Gispert M. Validation of the Spanish equation to predict the lean 
meat percentage of pig carcasses with the Fat-O-Meat’er. Spanish J Agric Res. 2004:545-9. 
https://doi.org/10.5424/sjar/2004024-117

9. Johnson RK, Berg EP, Goodwin R, Mabry JW, Miller RK, Robison OW, et al. Evaluation of 
procedures to predict fat-free lean in swine carcasses. J Anim Sci. 2004;82:2428-41. https://doi.
org/10.2527/2004.8282428x

10. Olsen EV, Candek-Potokar M, Oksama M, Kien S, Lisiak D, Busk H. On-line measurements 
in pig carcass classification: repeatability and variation caused by the operator and the copy of 
instrument. Meat Sci. 2007;75:29-38. https://doi.org/10.1016/j.meatsci.2006.06.011

11. Pomar C, Marcoux M, Gispert M, Font i Furnols M, Daumas G. Determining the lean 
content of pork carcasses. In: Kerry JP, Ledward D, editors. Improving the sensory and 
nutritional quality of fresh meat. Sawston: Woodhead; 2009. p.493-518.

12. Font i Furnols M, Gispert M. Comparison of different devices for predicting the lean meat 
percentage of pig carcasses. Meat Sci. 2009;83:443-6. https://doi.org/10.1016/j.meatsci.2009.06.018

13. Choi JS, Kwon KM, Lee YK, Joeng JU, Lee KO, Jin SK, et al. Application of AutoFOM III 
equipment for prediction of primal and commercial cut weight of Korean pig carcasses. Asian-
Australas J Anim Sci. 2018;31:1670-6. https://doi.org/10.5713/ajas.18.0240

14. Lohumi S, Wakholi C, Baek JH, Kim BD, Kang SJ, Kim HS, et al. Nondestructive estimation 
of lean meat yield of South Korean pig carcasses using machine vision technique. Korean J 
Food Sci Anim Resour. 2018;38:1109-19. https://doi.org/10.5851/kosfa.2018.e44

15. Ministry of Agriculture Food and Rural Affairs. Detailed standards for grading livestock 
products [Internet]. 2020 [cited 2021 Sep 23] https://www.law.go.kr/%ED%96%89%EC%A0
%95%EA%B7%9C%EC%B9%99/%EC%B6%95%EC%82%B0%EB%AC%BC%20%EB%9
3%B1%EA%B8%89%ED%8C%90%EC%A0%95%20%EC%84%B8%EB%B6%80%EA%B
8%B0%EC%A4%80

16. Pearson ES. The test of significance for the correlation coefficient. J Am Stat Assoc. 
1931;26:128-34. https://doi.org/10.1080/01621459.1931.10503208

17. Girden ER. ANOVA: repeated measures. Thousand Oaks, CA: Sage; 1992.
18. Lee SJ, Oh TK, Kim S, Min WG, Gutierrez WM, Chang HH, et al. Effects of environmental 



https://doi.org/10.5187/jast.2021.e133 https://www.ejast.org  |  165

Lim et al.

factors on death rate of pigs in South Korea. J Fac Agric Kyushu Univ. 2012;57:155-60. https://
doi.org/10.5109/22065

19. Kim TK. T test as a parametric statistic. Korean J Anesthesiol. 2015;68:540-6. https://doi.
org/10.4097/kjae.2015.68.6.540

20. Student. The probable error of a mean. Biometrika. 1908;6:1-25. https://doi.org/10.2307/2331554
21. Bendel RB, Afifi AA. Comparison of stopping rules in forward “stepwise” regression. J Am Stat 

Assoc. 1977;72:46-53. https://doi.org/10.2307/2286904
22. Steyerberg EW, Eijkemans MJC, Habbema JDF. Stepwise selection in small data sets: a 

simulation study of bias in logistic regression analysis. J Clin Epidemiol. 1999;52:935-42. 
https://doi.org/10.1016/S0895-4356(99)00103-1

23. Edwards LJ, Muller KE, Wolfinger RD, Qaqish BF, Schabenberger O. An R2 statistic for 
fixed effects in the linear mixed model. Stat Med. 2008;27:6137-57. https://doi.org/10.1002/
sim.3429

24. Knecht D, Duziński K. The effect of sex, carcass mass, back fat thickness and lean meat 
content on pork ham and loin characteristics. Arch Anim Breed. 2016;59:51-7. https://doi.
org/10.5194/aab-59-51-2016


