Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.4.317

Predicting the unconfined compressive strength of granite using only two non-destructive test indexes  

Armaghani, Danial J. (Department of Civil Engineering, Faculty of Engineering, University of Malaya)
Mamou, Anna (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Maraveas, Chrysanthos (Department of Civil Engineering, University of Patras)
Roussis, Panayiotis C. (Department of Civil and Environmental Engineering, University of Cyprus)
Siorikis, Vassilis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Skentou, Athanasia D. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Publication Information
Geomechanics and Engineering / v.25, no.4, 2021 , pp. 317-330 More about this Journal
Abstract
This paper reports the results of advanced data analysis involving artificial neural networks for the prediction of the unconfined compressive strength of granite using only two non-destructive test indexes. A data-independent site-independent unbiased database comprising 182 datasets from non-destructive tests reported in the literature was compiled and used to train and develop artificial neural networks for the prediction of the unconfined compressive strength of granite. The results show that the optimum artificial network developed in this research predicts the unconfined compressive strength of weak to very strong granites (20.3-198.15 MPa) with less than ±20% deviation from the experimental data for 70% of the specimen and significantly outperforms a number of available models available in the literature. The results also raise interesting questions with regards to the suitability of the Pearson correlation coefficient in assessing the prediction accuracy of models.
Keywords
unconfined compressive strength; rocks; non-destructive testing; effective porosity, pulse velocity, artificial neural networks; machine learning;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tsiambaos, G. and Sabatakakis, N. (2004), "Considerations on strength of intact sedimentary rocks", Eng. Geol., 72(3-4), 261-273. https://doi.org/10.1016/j.enggeo.2003.10.001.   DOI
2 Ebdali, M., Khorasani, E. and Salehin, S. (2020), "A comparative study of various hybrid neural networks and regression analysis to predict unconfined compressive strength of travertine", Innov. Infrastruct. Solutions, 5(3), 1-14. https://doi.org/10.1007/s41062-020-00346-3.   DOI
3 Barton, N. (1973), "Review of a new shear-strength criterion for rock joints", Eng. Geol., 7(4), 287-332. https://doi.org/10.1016/0013-7952(73)90013-6.   DOI
4 Bozorgzadeh, N., Harrison, J.P. and Escobar, M.D. (2019), "Hierarchical Bayesian modelling of geotechnical data: Application to rock strength", Geotechnique, 69(12), 1056-1070. https://doi.org/10.1680/jgeot.17.P.282.   DOI
5 Cavaleri, L., Chatzarakis, G.E., Di Trapani, F.D., Douvika, M.G., Roinos, K., Vaxevanidis, N.M. and Asteris, P.G. (2017), "Modeling of surface roughness in electro-discharge machining using artificial neural networks", Adv. Mater. Res., 6(2), 169-184. http://doi.org/10.12989/amr.2017.6.2.169.   DOI
6 Ceryan, N. and Samui, P. (2020), "Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree", Arab. J. Geosci., 13(7), 1-18. https://doi.org/10.1007/s12517-020-5273-4.   DOI
7 Ceryan, N., Okkan, U. and Kesimal, A. (2013), "Prediction of unconfined compressive strength of carbonate rocks using artificial neural networks", Environ. Earth Sci., 68(3), 807-819. https://doi.org/10.1007/s12665-012-1783-z.   DOI
8 Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Min. Sci., 34(8), 1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X.   DOI
9 Heidari, M., Mohseni, H. and Jalali, S.H. (2018), "Prediction of uniaxial compressive strength of some sedimentary rocks by fuzzy and regression models", Geotech. Geol. Eng., 36(1), 401-412. https://doi.org/10.1007/s10706-017-0334-5.   DOI
10 Hoek, E. and Brown, E.T. (1980), "Empirical strength criterion for rock masses", J. Geotech. Geoenviron. Eng., 106, 15715. https://doi.org/10.1061/AJGEB6.0001029.   DOI
11 Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proc NARMS-Tac., 1(1), 267-273.
12 Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Netw., 2, 359-366. https://doi.org/10.1016/0893-6080(89)90020-8.   DOI
13 ISRM (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974-2006, in Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Turkish National Group; Ankara, Turkey.
14 Kahraman, S. (2001), "Evaluation of simple methods for assessing the uniaxial compressive strength of rock", Int. J. Rock Mech. Min. Sci., 38(7), 981-994. https://doi.org/10.1016/S1365-1609(01)00039-9.   DOI
15 Ng, I.T., Yuen, K.V. and Lau, C.H. (2015), "Predictive model for uniaxial compressive strength for Grade III granitic rocks from Macao", Eng. Geol., 199, 28-37. https://doi.org/10.1016/j.enggeo.2015.10.008.   DOI
16 Nikoo, M., Hadzima-Nyarko, M., KarloNyarko, E. and Nikoo, M. (2018), "Determining the natural frequency of cantilever beams using ANN and heuristic search", Appl. Artif. Intell., 32(3), 309-334. https://doi.org/10.1080/08839514.2018.1448003.   DOI
17 Nikoo, M., Ramezani, F., Hadzima-Nyarko, M., Nyarko, E.K. and Nikoo, M. (2016), "Flood-routing modeling with neural network optimized by social-based algorithm", Nat. Hazards, 82(1), 1-24. https://doi.org/10.1007/s11069-016-2176-5.   DOI
18 Kilic, A. and Teymen, A. (2008), "Determination of mechanical properties of rocks using simple methods", B. Eng. Geol. Environ., 67(2), 237. https://doi.org/10.1007/s10064-008-0128-3.   DOI
19 Chaki, S., Takarli, M. and Agbodjan, W.P. (2008), "Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions", Construct. Build. Mater., 22(7), 1456-1461. https://doi.org/10.1016/j.conbuildmat.2007.04.002.   DOI
20 Ching, J., Li, K.H., Phoon, K.K. and Weng, M.C. (2018), "Generic transformation models for some intact rock properties", Can. Geotech. J., 55(12), 1702-1741. https://doi.org/10.1139/cgj-2017-0537   DOI
21 Nikoo, M., Sadowski, L., Khademi, F. and Nikoo, M. (2017), "Determination of damage in reinforced concrete frames with shear walls using self-organizing feature map", Appl. Comput. Intell. Soft Comput., 1-10. https://doi.org/10.1155/2017/3508189.   DOI
22 Tugrul, A. and Zarif, I.H. (1999), "Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey", Eng. Geol., 51(4), 303-317. https://doi.org/10.1016/S0013-7952(98)00071-4.   DOI
23 Vasconcelos, G., Lourenco, P.B., Alves, C.A. and Pamplona, J. (2007), "Prediction of the mechanical properties of granites by ultrasonic pulse velocity and Schmidt hammer hardness", Proceedings of the North American Masonry Conference, St. Louis, Missouri, October.
24 Vasconcelos, G., Lourenco, P.B., Alves, C.A.S. and Pamplona, J. (2008), "Ultrasonic evaluation of the physical and mechanical properties of granites", Ultrasonics, 48(5), 453-466. https://doi.org/10.1016/j.ultras.2008.03.008.   DOI
25 Psyllaki, P., Stamatiou, K., Iliadis, I., Mourlas, A., Asteris, P. and Vaxevanidis, N. (2018), "Surface treatment of tool steels against galling failure", Proceedings of the 5th International Conference of Engineering against failure, Chios, Greece, June.
26 Rahimi, I., Gandomi, A.H., Asteris, P.G. and Chen, F. (2021), "Analysis and prediction of COVID-19 using SIR, SEIQR, and machine learning models: Australia, Italy, and UK Cases", Information, 12(3), 109. https://doi.org/10.3390/info12030109.   DOI
27 Samui, P. (2008), "Support vector machine applied to settlement of shallow foundations on cohesionless soils", Comput. Geotech., 35(3), 419-427. https://doi.org/10.1016/j.compgeo.2007.06.014.   DOI
28 Wang, M., Wan, W. and Zhao, Y. (2020), "Prediction of the uniaxial compressive strength of rocks from simple index tests using a random forest predictive model", Comptes Rendus Mecanique, 348(1), 3-32. https://doi.org/10.5802/crmeca.3.   DOI
29 Cobanoglu, I. and Celik, S.B. (2008), "Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity", B. Eng. Geol. Environ., 67(4), 491-498. https://doi.org/10.1007/s10064-008-0158-x.   DOI
30 Tandon, R.S. and Gupta, V. (2015), "Estimation of strength characteristics of different Himalayan rocks from Schmidt hammer rebound, point load index, and compressional wave velocity", B. Eng. Geol. Environ., 74(2), 521-533. https://doi.org/10.1007/s10064-014-0629-1.   DOI
31 Wu, H.H. and Wu, S. (2009), "Various proofs of the Cauchy-Schwarz Inequality", Octogon Math. Magazine, 17(1), 221-229.
32 Xu, H., Zhou, J., Asteris, P.G., Armaghani, D.J. and Tahir, M. (2019), "Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate", Appl. Sci., 9(18), 3715. https://doi.org/10.3390/app9183715.   DOI
33 Yagiz, S., Sezer, E.A. and Gokceoglu, C. (2012), "Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks", Int. J. Numer. Anal. Met., 36(14), 1636-1650. https://doi.org/10.1002/nag.1066.   DOI
34 Ferentinou, M. and Fakir, M. (2017), "An ANN approach for the prediction of uniaxial compressive strength, of some sedimentary and igneous rocks in eastern KwaZulu-Natal", Procedia Eng., 191, 1117-1125. https://doi.org/10.1016/j.proeng.2017.05.286.   DOI
35 Chen, H., Asteris, P.G., Armaghani, D.J., Gordan, B. and Pham, B.T. (2019), "Assessing dynamic conditions of the retaining wall using two hybrid intelligent models", Appl. Sci., 9, 1042. https://doi.org/10.3390/app9061042.   DOI
36 Das, S.K., Samui, P. and Sabat, A.K. (2011), "Application of artificial intelligence to maximum dry density and unconfined compressive strength of cement stabilized soil", Geotech. Geol. Eng., 29(3), 329-342. https://doi.org/10.1007/s10706-010-9379-4.   DOI
37 Dehghan, S., Sattari, G.H., Chelgani, S.C. and Aliabadi, M.A. (2010), "Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks", Min. Sci. Technol., 20(1), 41-46. https://doi.org/10.1016/S1674-5264(09)60158-7.   DOI
38 Diamantis, K., Bellas, S., Migiros, G. and Gartzos, E. (2011), "Correlating wave velocities with physical, mechanical properties and petrographic characteristics of peridotites from the central Greece", Geotech. Geol. Eng., 29(6), 1049. https://doi.org/10.1007/s10706-011-9436-7.   DOI
39 Karlik, B. and Olgac, A.V. (2011), "Performance analysis of various activation functions in generalized MLP architectures of neural networks", Int. J. Artif. Intell. Expert Syst., 1(4), 111-122.
40 Diamantis, K., Gartzos, E. and Migiros, G. (2009), "Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations", Eng. Geol., 108(3-4), 199-207. https://doi.org/10.1016/j.enggeo.2009.07.002.   DOI
41 Kechagias, J., Tsiolikas, A., Asteris, P. and Vaxevanidis, N. (2018), "Optimizing ANN performance using DOE: Application on turning of a titanium alloy", Proceedings of the 22nd International Conference on Innovative Manufacturing Engineering and Energy, Chisinau, Moldova, May.
42 Kashani, A.R., Gandomi, M., Camp, C.V., Rostamian, M. and Gandomi, A.H. (2020), "Metaheuristics in civil engineering: A review", Metaheur. Comput. Appl., 1(1), 19-42. http://doi.org/10.12989/mca.2020.1.1.019   DOI
43 Kelsall, P.C., Watters, R.J. and Franzone, G. (1986), "Engineering characterization of fissured, weathered dolerite and vesicular basalt", Proceedings of the 27th U.S. Symposium on Rock Mechanics, Tuscaloosa, Alabama, U.S.A., June.
44 Khandelwal, M. (2013), "Correlating P-wave velocity with the physico-mechanical properties of different rocks", Pure Appl. Geophys., 170(4), 507-514. https://doi.org/10.1007/s00024-012-0556-7.   DOI
45 Samui, P. and Kothari, D.P. (2011), "Utilization of a least square support vector machine (LSSVM) for slope stability analysis", Scientia Iranica, 18(1), 53-58. https://doi.org/10.1016/j.scient.2011.03.007.   DOI
46 Singh, T.N., Kainthola, A. and Venkatesh, A. (2012), "Correlation between point load index and uniaxial compressive strength for different rock types", Rock Mech. Rock Eng., 45(2), 259-264. https://doi.org/10.1007/s00603-011-0192-z.   DOI
47 Armaghani, D.J., Mohamad, E.T., Momeni, E., Monjezi, M. and Narayanasamy, M.S. (2016b), "Prediction of the strength and elasticity modulus of granite through an expert artificial neural network", Arab. J. Geosci., 9(1), 48. https://doi.org/10.1007/s12517-015-2057-3.   DOI
48 Yesiloglu-Gultekin, N., Gokceoglu, C. and Sezer, E.A. (2013), "Prediction of uniaxial compressive strength of granitic rocks by various nonlinear tools and comparison of their performances", Int. J. Rock Mech. Min. Sci., 62, 113-122. https://doi.org/10.1016/j.ijrmms.2013.05.005.   DOI
49 Zeng, J., Asteris, P.G., Mamou, A.P., Mohammed, A.S., Golias, E.A., Armaghani, D.J., Faizi, K. and Hasanipanah, M. (2021), "The effectiveness of ensemble-neural network techniques to predict peak uplift resistance of buried pipes in reinforced Sand", Appl. Sci., 2(11), 908. https://doi.org/10.3390/app11030908.   DOI
50 Bartlett, P.L. (1998), "The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network", IEEE T. Inform. Theor., 44(2), 525-536. https://doi.org/10.1109/18.661502.   DOI
51 Tugrul, A. (2004), "The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey", Eng. Geol., 75(3-4), 215-227. https://doi.org/10.1016/j.enggeo.2004.05.008.   DOI
52 Asteris, P. G., Douvika, M. G., Karamani, C. A., Skentou, A. D., Chlichlia, K., Cavaleri, L., Daras, T., Armaghani, D.J. and Zaoutis, T.E. (2020), "A novel heuristic algorithm for the modeling and Risk Assessment of the COVID-19 pandemic phenomenon", Comput. Model. Eng. Sci., 125(2), 815-828. https://doi.org/10.32604/cmes.2020.013280.   DOI
53 Moussas, V.M. and Diamantis, K. (2021), "Predicting uniaxial compressive strength of serpentinites through physical, dynamic and mechanical properties using neural networks", J. Rock Mech. Geotech. Eng., 13(1), 167-175. https://doi.org/10.1016/j.jrmge.2020.10.001.   DOI
54 Apostolopoulou, M., Douvika, M.G., Kanellopoulos, I.N., Moropoulou, A. and Asteris, P.G. (2018), "Prediction of compressive strength of mortars using artificial neural networks", Proceedings of the 1st International Conference TMM_CH, Transdisciplinary Multispectral Modelling and Cooperation for the Preservation of Cultural Heritage, Athens, Greece, October.
55 Armaghani, D.J., Amin, M.F.M., Yagiz, S., Faradonbeh, R.S. and Abdullah, R.A. (2016c), "Prediction of the uniaxial compressive strength of sandstone using various modeling techniques", Int. J. Rock Mech. Min. Sci., 85, 174-186. https://doi.org/10.1016/j.ijrmms.2016.03.018.   DOI
56 Armaghani, D.J., Hajihassani, M., Sohaei, H., Mohamad, E.T., Marto, A., Motaghedi, H. and Moghaddam, M.R. (2015), "Neuro-fuzzy technique to predict air-overpressure induced by blasting", Arab. J. Geosci., 8(12), 10937-10950. https://doi.org/10.1007/s12517-015-1984-3.   DOI
57 Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, Ch., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computing-based techniques for concrete beams shear strength", Proc. Struct. Integrit. 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.   DOI
58 Armaghani, D.J., Mohamad, E.T., Hajihassani, M., Yagiz, S. and Motaghedi, H. (2016a), "Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances", Eng. Comput., 32(2), 189-206. https://doi.org/10.1007/s00366-015-0410-5.   DOI
59 Armaghani, D.J., Momeni, E. and Asteris, P.G. (2020), "Application of group method of data handling technique in assessing deformation of rock mass", Metaheur. Comput. Appl., 1(1), 1-18. http://doi.org/10.12989/mca.2020.1.1.001.   DOI
60 Khandelwal, M. and Singh, T.N. (2009), "Correlating static properties of coal measures rocks with P-wave velocity", Int. J. Coal Geol., 79(1-2), 55-60. https://doi.org/10.1016/j.coal.2009.01.004.   DOI
61 Aydin, A. and Basu, A. (2005), "The Schmidt hammer in rock material characterization", Eng. Geol., 81(1), 1-14. https://doi.org/10.1016/j.enggeo.2005.06.006.   DOI
62 Asteris, P.G. and Kolovos, K.G. (2017), "Self-compacting concrete strength prediction using surrogate models", Neural Comput. Appl., 1-16. https://doi.org/10.1007/s00521-017-3007-7.   DOI
63 Asteris, P.G. and Plevris, V. (2013), "Neural network approximation of the masonry failure under biaxial compressive stress", Proceedings of the 3rd South-East European Conference on Computational Mechanics (SEECCM III), an ECCOMAS and IACM Special Interest Conference, Kos Island, Greece, June.
64 Asteris, P.G. and Plevris, V. (2016), "Anisotropic masonry failure criterion using artificial neural networks", Neural Comput. Appl., 1-23. https://doi.org/10.1007/s00521-016-2181-3.   DOI
65 Asteris, P.G., Apostolopoulou, M., Armaghani, D.J., Cavaleri, L., Chountalas, A.T., Guney, D., Hajihassani, M., Hasanipanah, M., Khandelwal, M., Karamani, C., Koopialipoor, M., Kotsonis, E., Le, T.T., Lourenco, P.B., Ly, H.B., Moropoulou, A., Nguyen, H., Pham, B.T., Samui, P. and Zhou, J. (2020), "On the metaheuristic models for the prediction of cement-metakaolin mortars compressive strength", Metaheur. Comput. Appl., 1(1), 63-99. http://doi.org/10.12989/mca.2020.1.1.063.   DOI
66 ASTM D2166 (2016), Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
67 Barham, W.S., Rababah, S.R., Aldeeky, H.H. and Al Hattamleh, O.H. (2020), "Mechanical and physical based artificial neural network models for the prediction of the unconfined compressive strength of rock", Geotech. Geol. Eng., 38(5), 4779-4792. https://doi.org/10.1007/s10706-020-01327-0.   DOI
68 Armaghani, D.J. and Asteris, P.G. (2020), "A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength", Neural Comput. Appl., 1-32. https://doi.org/10.1007/s00521-020-05244-4.   DOI
69 Asteris, P.G. and Mokos, V.G. (2019), "Concrete compressive Ssrength using artificial neural networks", Neural Comput. Appl., 1-20. https://doi.org/10.1007/s00521-019-04663-2.   DOI
70 Hoek, E.(1983), "Strength of jointed rock masses", Geotechnique, 33(3), 187-223. https://doi.org/10.1680/geot.1983.33.3.187.   DOI
71 Aggistalis, G., Alivizatos, A., Stamoulis, D. and Stournaras, G. (1996), "Correlating uniaxial compressive strength with Schmidt hardness, point load index, Young's modulus, and mineralogy of gabbros and basalts (Northern Greece)", B. Int. Assoc. Eng. Geol., 54(1), 3-11. https://doi.org/10.1007/BF02600693.   DOI
72 Moradian, Z.A. and Behnia, M. (2009), "Predicting the uniaxial compressive strength and static Young's modulus of intact sedimentary rocks using the ultrasonic test", Int. J. Geomech., 9(1), 14-19. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14).   DOI
73 Cavaleri, L., Asteris, P.G., Psyllaki, P.P., Douvika, M.G., Skentou, A.D. and Vaxevanidis, N.M. (2019), "Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks", Appl. Sci., 9(14), 2788. https://doi.org/10.3390/app9142788.   DOI
74 Asteris, P.G., Roussis, P.C. and Douvika, M.G. (2017), "Feed-forward neural network prediction of the mechanical properties of sandcrete materials", Sensors, 17(6), 1344. https://doi.org/10.3390/s17061344.   DOI
75 Franklin, J.A. and Dusseault, M.B (1991), Rock Engineering Applications, McGraw-Hill, New York, U.S.A.
76 Yasar, E. and Erdogan, Y. (2004a), "Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks", Int. J. Rock Mech. Min. Sci., 41(5), 871-875. https://doi.org/10.1016/j.ijrmms.2004.01.012.   DOI
77 Yasar, E. and Erdogan, Y. (2004b), "Estimation of rock physicomechanical properties using hardness methods", Eng. Geol., 71(3-4), 281-288. https://doi.org/10.1016/S0013-7952(03)00141-8.   DOI
78 Khandelwal, M., Armaghani, D.J., Faradonbeh, R.S., Ranjith, P.G. and Ghoraba, S. (2016), "A new model based on gene expression programming to estimate air flow in a single rock joint", Environ. Earth. Sci., 75(9), 739-786. https://doi.org/10.1007/s12665-016-5524-6.   DOI
79 Li, D., Armaghani, D.J., Zhou, J., Lai, S.H. and Hasanipanah, M. (2020), "A GMDH predictive model to predict rock material strength using three non-destructive tests", J. Nondestruct. Eval., 39(4), 1-14. https://doi.org/10.1007/s10921-020-00725-x.   DOI
80 Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Comput-Aid. Civ. Infrastruct. Eng., 16, 126-142. https://doi.org/10.1111/0885-9507.00219.   DOI
81 Aladejare, A.E. (2020), "Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests", J. Rock Mech. Geotech. Eng., 12(2), 256-268. https://doi.org/10.1016/j.jrmge.2019.08.001.   DOI
82 Alavi, A.H. and Gandomi, A.H. (2012), "Energy-based numerical models for assessment of soil liquefaction", Geosci. Front., 3(4), 541-555. https://doi.org/10.1016/j.gsf.2011.12.008.   DOI
83 Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Proc. Struct. Integrit., 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.   DOI
84 Apostolopoulou, M., Asteris, P.G., Armaghani, D.J., Douvika, MG., Lourenco, P.B., Cavaleri, L., Bakolas, A. and Moropoulou, A. (2020), "Mapping and holistic design of natural hydraulic lime mortars", Cement Concrete Res., 136, 106167. https://doi.org/10.1016/j.cemconres.2020.106167.   DOI
85 Yurdakul, M. and Akdas, H. (2013), "Modeling uniaxial compressive strength of building stones using non-destructive test results as neural networks input parameters", Constr. Build. Mater., 47, 1010-1019. https://doi.org/10.1016/j.conbuildmat.2013.05.109.   DOI
86 Gavriilaki, E., Asteris, P.G., Touloumenidou, T., Koravou, E.E., Koutra, M., Papayanni, P.G., Karali, V., Papalexandri, A., Varelas, C., Chatzopoulou, F., Chatzidimitriou, M. and Anagnostopoulos, A. (2021), "Genetic justification of severe COVID-19 using a rigorous algorithm", Clin. Immun., 226, 108726. https://doi.org/10.1016/j.clim.2021.108726   DOI
87 Yilmaz, I. and Yuksek, A.G. (2008), "An example of artificial neural network (ANN) application for indirect estimation of rock parameters", Rock Mech. Rock Eng., 41(5), 781-795. https://doi.org/10.1007/s00603-007-0138-7.   DOI
88 Yilmaz, I. and Yuksek, G. (2009), "Prediction of the strength and elasticity modulus of gypsum using multiple regression, ANN, and ANFIS models", Int. J. Rock Mech. Min. Sci., 46(4), 803-810. https://doi.org/10.1016/j.ijrmms.2008.09.002.   DOI
89 Zhao, J., Nguyen, H., Nguyen-Thoi, T., Asteris, P.G. and Zhou, J. (2021), "Improved Levenberg-Marquardt backpropagation neural network by particle swarm and whale optimization algorithms to predict the deflection of RC beams", Eng. Comput., 1-23. https://doi.org/10.1007/s00366-020-01267-6.   DOI
90 Zhang, H., Nguyen, H., Bui, X.N., Pradhan, B., Asteris, P.G., Costache, R. and Aryal, J.A. (2021), "A generalized artificial intelligence model for estimating the friction angle of clays in evaluating slope stability using a deep neural network and Harris Hawks optimization algorithm", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-01272-9.   DOI
91 Goudie, A.S. (2006), "The Schmidt hammer in geomorphological research", Progress Phys. Geography, 30(6), 703. https://doi.org/10.1177/0309133306071954.   DOI
92 Hawkins, A.B. (1998), "Aspects of rock strength", B. Eng. Geol. Environ., 57(1), 17-30. https://doi.org/10.1007/s100640050017.   DOI
93 Thuro, K., Plinninger, R.J., Zah, S. and Schutz, S. (2001), "Scale effects in rock strength properties. Part 1: Unconfined compressive test and Brazilian test", Proceedings of the ISRM Regional Symposium, EUROCK 2001, Espoo, Finland, June.
94 Tsiambaos, G. and Sabatakakis, N. (2004), "Considerations on strength of intact sedimentary rocks", Eng. Geol., 72(3-4), 261-273. https://doi.org/10.1016/j.enggeo.2003.10.001.   DOI
95 Minaeian, B. and Ahangari, K. (2013), "Estimation of uniaxial compressive strength based on P-wave and Schmidt hammer rebound using statistical method", Arab. J. Geosci., 6(6), 1925-1931. https://doi.org/10.1007/s12517-011-0460-y.   DOI
96 Liang, M., Mohamad, E.T., Faradonbeh, R.S., Armaghani, D.J. and Ghoraba, S. (2016), "Rock strength assessment based on regression tree technique", Eng. Comput., 32(2), 343-354. https://doi.org/10.1007/s00366-015-0429-7.   DOI
97 Madhubabu, N., Singh, P.K., Kainthola, A., Mahanta, B., Tripathy, A. and Singh, T.N. (2016), "Prediction of compressive strength and elastic modulus of carbonate rocks", Measurement, 88, 202-213. https://doi.org/10.1016/j.measurement.2016.03.050.   DOI
98 Marinos, P. and Hoek, E. (2000), "GSI: A geologically friendly tool for rock mass strength estimation", Proceedings of the ISRM International Symposium, Melbourne, Australia, November.
99 Mishra, D.A. and Basu, A. (2013), "Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system", Eng. Geol., 160, 54-68. https://doi.org/10.1016/j.enggeo.2013.04.004.   DOI
100 Momeni, E., Armaghani, D.J., Hajihassani, M. and Amin, M.F.M. (2015), "Prediction of uniaxial compressive strength of rock samples using hybrid particle swarm optimization-based artificial neural networks", Measurement, 60, 50-63. https://doi.org/10.1016/j.measurement.2014.09.075.   DOI
101 Teymen, A. and Menguc, E.C. (2020), "Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks", Int. J. Min. Sci. Technol., 30(6), 785-797. https://doi.org/10.1016/j.ijmst.2020.06.008.   DOI