• Title/Summary/Keyword: non-composite

Search Result 1,575, Processing Time 0.03 seconds

Flexural Behavior of Steel Composite Beam with Built-up Cross-section by Bolt Connection (볼트로 체결된 강재 조립 합성보의 휨 거동)

  • Kim, Sung-Bo;Han, Man-Yop;Kim, Moon-Young;Ji, Tea-Sug;Jung, Kyoung-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.207-216
    • /
    • 2007
  • The flexural behavior of steel composite beam with built-up cross-section by bolt connection is presented in this paper. The composite effect due to bolt-connetion and friction between steel plate are considered to investigate the flexural behavior of steel composite beam. The displacement, bending stresses and shear stresses according to composite rate are calculated by F.E. analysis and these results are compared to the analytical values of non interaction beam and full interaction beam. As a result of analysis, the behavior of composite beam is more dependant on the composite rate than the friction of the steel plate. When the composite rate reaches $50{\sim}60%$, the behavior of composite beam is similar to that of fully composite beam.

Flexural performance of composite sandwich wall panels with foamed concrete

  • Lei Li;Wei Huang;Zhengyi Kong;Li Zhang;Youde Wang;Quang-Viet Vu
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.391-403
    • /
    • 2024
  • The flexural behavior of composite sandwich wall panels with different thicknesses, numbers of holes, and hole forms, and arrangement form of longitudinal steel bar (uniform type and concealed-beam type) are investigated. A total of twelve composite sandwich wall panels are prepared, utilizing modified polystyrene particles mixed with foam concrete for the flexural performance test. The failure pattern of the composite sandwich wall panels is influenced by the extruded polystyrene panel (XPS) panel thickness and the reinforcement ratio in combination, resulting in both flexural and shear failure modes. Increasing the XPS panel thickness causes the specimens to transition from flexural failure to shear failure. An increase in the reinforcement ratio leads to the transition from flexural failure to shear failure. The hole form on the XPS panel and the steel bar arrangement form affect the loading behavior of the specimens. Plum-arrangement hole form specimens exhibit lower steel bar strain and deflection compared to linear-arrangement hole form specimens. Additionally, specimens with concealed beam-type steel bar display lower steel bar strain and deflection than uniform-type steel bar specimens. However, the hole form and steel bar arrangement form have a limited impact on the ultimate load. Theoretical formulas for cracking load are provided for both fully composite and non-composite states. When compared to the experimental values, it is observed that the cracking load of the specimens with XPS panels closely matches the calculations for the non-composite state. An accurate prediction model for the ultimate load of fully composite wall panels is developed. These findings offer valuable insights into the behavior of composite sandwich wall panels and provide a basis for predicting their performance under various design factors and conditions.

Fatigue Analysis for Fiber Right Angle Direction of FRP Deck (FRP 바닥판의 섬유직각 방향에 대한 피로해석)

  • Kim, Doo-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.81-86
    • /
    • 2014
  • Composite materials have high specific stiffness, specific strength than existing concrete or steel materials. It has superior dynamic properties when utilizing advantages of material such as Non-corrosive, light weight, non-conducting and it has superior mold ability which can make variable shapes. Thus, in the construction, for using composite materials as construction materials, the study carried out static strength of fiber right angle direction and fatigue performance of FRP deck member. The study is going to deduct S-N curve by analyzing the results comparatively and estimate long-term durability. From now on, the study is going to provide interpretation of FRP member and basic data of design basis, furthermore providing foundation technique of composite materials' application of structural frame is the goal of this study.

Machining Sequence Generation with Machining Times for Composite Features (가공시간에 의한 복합특징형상의 가공순서 생성)

  • 서영훈;최후곤
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.244-253
    • /
    • 2001
  • For more complete process planning, machining sequence determination is critical to attain machining economics. Although many studies have been conducted in recent years, most of them suggests the non-unique machining sequences. When the tool approach directions(TAD) are considered fur a feature, both machining time and number of setups can be reduced. Then, the unique machining sequence can be extracted from alternate(non-unique) sequences by minimizing the idle time between operations within a sequence. This study develops an algorithm to generate the best machining sequence for composite prismatic features in a vertical milling operation. The algorithm contains five steps to produce an unique sequence: a precedence relation matrix(PRM) development, tool approach direction determination, machining time calculation, alternate machining sequence generation, and finally, best machining sequence generation with idle times. As a result, the study shows that the algorithm is effective for a given composite feature and can be applicable fur other prismatic parts.

  • PDF

Influence of Loading Procedure of Liquid Butadiene Rubber on Properties of Silica-filled Tire Tread Compounds

  • Jinwoo Seo;Woong Kim;Seongguk Bae;Jungsoo Kim
    • Elastomers and Composites
    • /
    • v.57 no.4
    • /
    • pp.129-137
    • /
    • 2022
  • Low molecular weight liquid butadiene rubber (LqBR) is a processing aid that can resolve the migration problem of tire tread compounds. Various studies are being conducted to replace the petroleum-based processing oil with LqBR. However, the effect of the loading time of LqBR in the compounding process on silica dispersion and vulcanizate properties is not well known. In this study, we analyzed silica dispersion, vulcanizate properties, and viscoelastic properties of silica-filled tire tread compound according to the processing aid type (TDAE oil, non-functional LqBR) and, silane terminated LqBR) and input timing. In the non-functional LqBR compounds, the 'with TESPT' mixing procedure showed excellent dynamic viscoelastic properties while silane-terminated LqBR compounds showed that the 'after TESPT' mixing procedure was good for 300% modulus and abrasion resistance.

The effect of preheating resin composites on surface hardness: a systematic review and meta-analysis

  • Elkaffas, Ali A.;Eltoukhy, Radwa I.;Elnegoly, Salwa A.;Mahmoud, Salah H.
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.4
    • /
    • pp.41.1-41.13
    • /
    • 2019
  • Objectives: This paper presents a systematic review and meta-analysis of the effect of preheating on the hardness of nanofilled, nanoceramic, nanohybrid, and microhybrid resin composites. Materials and Methods: An electronic search of papers on MEDLINE/PubMed, ScienceDirect, and EBSCOhost was performed. Only in vitro studies were included. Non-English studies, case reports, clinical trials, and review articles were excluded. A meta-analysis of the reviewed studies was conducted to quantify differences in the microhardness of the Z250 microhybrid resin composite using the Comprehensive Meta-Analysis software. Results: Only 13 studies met the inclusion criteria for this systematic review. The meta-analysis showed that there were significant differences between the non-preheated and preheated modes for both the top and bottom surfaces of the specimens (p < 0.05). The microhardness of the Z250 resin composite on the top surface in the preheated mode (78.1 ± 2.9) was higher than in the non-preheated mode (67.4 ± 4.0; p < 0.001). Moreover, the microhardness of the Z250 resin composite on the bottom surface in the preheated mode (71.8 ± 3.8) was higher than in the non-preheated mode (57.5 ± 5.7, p < 0.001). Conclusions: Although the results reported in the reviewed studies showed great variability, sufficient scientific evidence was found to support the hypothesis that preheating can improve the hardness of resin composites.

Evaluation of the repair capacities and color stabilities of a resin nanoceramic and hybrid CAD/CAM blocks

  • Bahadir, Hasibe Sevilay;Bayraktar, Yusuf
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.3
    • /
    • pp.140-149
    • /
    • 2020
  • PURPOSE. This study evaluated the color stabilities of two computer-aided design and computer-aided manufacturing (CAD/CAM) blocks and a nanofill composite resin and the microtensile bond strength (µTBS) between the materials. MATERIALS AND METHODS. Twelve specimens of 4 mm height were prepared for both Lava Ultimate (L) and Vita Enamic (E) CAD/CAM blocks. Half of the specimens were thermocycled (10,000 cycle, 5° to 55℃) for each material. Both thermocycled and non-thermocycled specimens were surface treated with one of the three different methods (Er,Cr:YSGG laser, bur, or control). For each surface treatment group, one of the thermocycled and one of non-thermocycled specimens were restored using silane (Ceramic Primer II), universal adhesive (Single Bond Universal), and nanofill composite resin of 4-mm height (Filtek Ultimate). The other specimens were restored with the same procedure without using silane. For each group, 1 × 1 × 8 mm bar specimens were prepared using a microcutting device. Bar specimens were thermocycled (10,000 cycle, 5° to 55℃) and microtensile tests were performed. Staining of the materials in coffee solution was also compared using a spectrophotometer. Data were analyzed using one-way ANOVA, t-test and post-hoc Scheffe tests. RESULTS. µTBS were found similar between the thermocycled and non-thermocycled groups (P>.05). The highest µTBS (20.818 MPa) was found in the non-thermocycled, bur-ground, silane-applied E group. Silane increased µTBS at some E groups (P<.05). Composite resin specimens showed more staining than CAD/CAM blocks (P<.05). CONCLUSION. CAD/CAM blocks can be repaired with composite resins after proper surface treatments. Using silane is recommended in repair process. Color differences may be shown between CAD/CAM blocks and the nanofill composite after a certain time period.

Destructive Test to Ensure Integrity of Composite Structure (파괴시험을 통한 복합재 구조물의 건전성 입증)

  • Yang, Hyun-Deok;Jeong, Duck-Young;Lee, Kyung-Cheol;Jin, Young-Kwon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.230-236
    • /
    • 2007
  • The quality control of composite structure includes inspection, testing and monitoring in all processes from receiving inspection to part fabrication. The purpose of these activities is to ensure that the design objectives are consistently achieved. The quality factors include material, receiving inspection, storage and shelf-life control, environmental control, testing, inspection and record control. This paper presents the process verification method using destructive test and quality control method in composite structure of aircraft. And it is believed that the destructive test will be basis to obtain a reliability of non-destructive test in complex composite structure and to ensure the design requirements in composite part.

  • PDF

A Study on the Dynamic Characteristics of a Composite Beam with a Transverse Open Crack (크랙이 존재하는 복합재료 보의 동적 특성 연구)

  • 하태완;송오섭
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1019-1028
    • /
    • 1999
  • Free vibration characteristics of cantilevered laminated composite beams with a transverse non0propagating open carck are investigated. In the present analysis a special ply-angle distribution referred to as asymmetric stiffness configuration inducing the elastic coupling between chord-wise bending and extension is considered. The open crack is modelled as an equivalent rotational spring whose spring constant is calculated on the basis of fracture mechanics of composite material structures. Governing equations of a composite beam with a open crack are derived via Hamilton's Principle and Timoshenko beam theory encompassing transverse shear and rotary inertia effect. the effects of various parameters such as the ply angle, fiber volume fraction, crack depth, crack position and transverse shear on the free vibration characteristics of the beam with a crack is highlighted. The numerical results show that the natural frequencies obtained from Timoshenko beam theory are always lower than those from Euler beam theory. The presence of intrinsic cracks in anisotropic composite beams modifies the flexibility and in turn free vibration characteristics of the structures. It is revealed that non-destructive crack detection is possible by analyzing the free vibration responses of a cracked beam.

  • PDF

Vibration analysis of a pre-stressed laminated composite curved beam

  • Ozturk, Hasan
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.635-659
    • /
    • 2015
  • In this study, natural frequency analysis of a large deflected cantilever laminated composite beam fixed at both ends, which forms the case of a pre-stressed curved beam, is investigated. The laminated beam is considered to have symmetric and asymmetric lay-ups and the effective flexural modulus of the beam is used in the analysis. In order to obtain the pre-stressed composite curved beam case, an external vertical concentrated load is applied at the free end of a cantilever laminated composite beam and then the loading point of the deflected beam is fixed. The non-linear deflection curve of the flexible beam undergoing large deflection is obtained by the Reversion Method. The curved laminated composite beam is modeled by using the Finite Element Method with a straight-beam element approach. The effects of orientation angle and vertical load on the natural frequency parameter for the first four modes are examined and the results obtained are given in graphics. It has been found that the effect of the load parameter, which forms the curved laminated beam, on the natural frequency parameter, almost disappears after a certain value of the load parameter. This certain value differs for each laminated curved beam and each vibration mode.