• Title/Summary/Keyword: non-classical

Search Result 468, Processing Time 0.023 seconds

Non-classical plate model for single-layered graphene sheet for axial buckling

  • Safaei, Babak;Khoda, Farzad Hamed;Fattahi, A.M.
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.265-275
    • /
    • 2019
  • In this work, the effect of size on the axial buckling behavior of single-layered graphene sheets embedded in elastic media is studied. We incorporate Eringen's nonlocal elasticity equations into three plate theories of first order shear deformation theory, higher order shear deformation theory, and classical plate theory. The surrounding elastic media are simulated using Pasternak and Winkler foundation models and their differences are evaluated. The results obtained from different nonlocal plate theories include the values of Winkler and Pasternak modulus parameters, mode numbers, nonlocal parameter, and side lengths of square SLGSs. We show here that axial buckling behavior strongly depends on modulus and nonlocal parameters, which have different values for different mode numbers and side lengths. In addition, we show that in different nonlocal plate theories, nonlocality is more influential in first order shear deformation theory, especially in certain range of nonlocal parameters.

Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials

  • Karami, Behrouz;Karami, Sara
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.51-61
    • /
    • 2019
  • This paper develops a four-unknown refined plate theory and the Galerkin method to investigate the size-dependent stability behavior of functionally graded material (FGM) under the thermal environment and the FGM having temperature-dependent material properties. In the current study two scale coefficients are considered to examine buckling behavior much accurately. Reuss micromechanical scheme is utilized to estimate the material properties of inhomogeneous nano-size plates. Governing differential equations, classical and non-classical boundary conditions are obtained by utilizing Hamiltonian principles. The results showed the high importance of considering temperature-dependent material properties for buckling analysis. Different influencing parametric on the buckling is studied which may help in design guidelines of such complex structures.

A Disturbance Observer-Based Output Feedback Controller for a DC/DC Boost Converter with Load Variation (부하변동을 고려한 DC/DC 승압형 컨버터의 외란 관측기 기반 출력 궤환 제어기)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1405-1410
    • /
    • 2009
  • Output voltage of a DC/DC power converter system is likely to be distorted if variable loads exist in the output terminal. This paper presents a new disturbance observer(DOB) approach to maintain a robust regulation of the output voltage of a boost type DC/DC converter. Unlike the buck-type converter case, the regulation problem of the boost converter is very complicated by the fact that, with respect to the output voltage to be regulated, the system is non-minimum phase. Owing to the non-minimum phase property the classical DOB approach has not been applied to the boost converter. Motivated by a recent result on the application of DOB to non-mimimum phase system, an output feedback control law is proposed by using a parallel feedforward compensator. Simulation results using the Simulink SimPowerSystems prove the performance of the proposed controller against load variation.

A four-variable plate theory for thermal vibration of embedded FG nanoplates under non-uniform temperature distributions with different boundary conditions

  • Barati, Mohammad Reza;Shahverdi, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.707-727
    • /
    • 2016
  • In this paper, thermal vibration of a nonlocal functionally graded (FG) plates with arbitrary boundary conditions under linear and non-linear temperature fields is explored by developing a refined shear deformation plate theory with an inverse cotangential function in which shear deformation effect was involved without the need for shear correction factors. The material properties of FG nanoplate are considered to be temperature-dependent and graded in the thickness direction according to the Mori-Tanaka model. On the basis of non-classical higher order plate model and Eringen's nonlocal elasticity theory, the small size influence was captured. Numerical examples show the importance of non-uniform thermal loadings, boundary conditions, gradient index, nonlocal parameter and aspect and side-to-thickness ratio on vibrational responses of size-dependent FG nanoplates.

ASYMPTOTIC STABILITY OF NON-AUTONOMOUS UPPER TRIANGULAR SYSTEMS AND A GENERALIZATION OF LEVINSON'S THEOREM

  • Lee, Min-Gi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.237-253
    • /
    • 2020
  • This article studies asymptotic stability of non-auto nomous linear systems with time-dependent coefficient matrices {A(t)}t∈ℝ. The classical theorem of Levinson has been widely used to science and engineering non-autonomous systems, but systems with defective eigenvalues could not be covered because such a family does not allow continuous diagonalization. We study systems where the family allows to have upper triangulation and to have defective eigenvalues. In addition to the wider applicability, working with upper triangular matrices in place of Jordan form matrices offers more flexibility. We interpret our and earlier works including Levinson's theorem from the perspective of invariant manifold theory.

Bending behavior of squared cutout nanobeams incorporating surface stress effects

  • Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.36 no.2
    • /
    • pp.143-161
    • /
    • 2020
  • In nanosized structures as the surface area to the bulk volume ratio increases the classical continuum mechanics approaches fails to investigate the mechanical behavior of such structures. In perforated nanobeam structures, more decrease in the bulk volume is obtained due to perforation process thus nonclassical continuum approaches should be employed for reliable investigation of the mechanical behavior these structures. This article introduces an analytical methodology to investigate the size dependent, surface energy, and perforation impacts on the nonclassical bending behavior of regularly squared cutout nanobeam structures for the first time. To do this, geometrical model for both bulk and surface characteristics is developed for regularly squared perforated nanobeams. Based on the proposed geometrical model, the nonclassical Gurtin-Murdoch surface elasticity model is adopted and modified to incorporate the surface energy effects in perforated nanobeams. To investigate the effect of shear deformation associated with cutout process, both Euler-Bernoulli and Timoshenko beams theories are developed. Mathematical model for perforated nanobeam structure including surface energy effects are derived in comprehensive procedure and nonclassical boundary conditions are presented. Closed forms for the nonclassical bending and rotational displacements are derived for both theories considering all classical and nonclassical kinematics and kinetics boundary conditions. Additionally, both uniformly distributed and concentrated loads are considered. The developed methodology is verified and compared with the available results and an excellent agreement is noticed. Both classical and nonclassical bending profiles for both thin and thick perforated nanobeams are investigated. Numerical results are obtained to illustrate effects of beam filling ratio, the number of hole rows through the cross section, surface material characteristics, beam slenderness ratio as well as the boundary and loading conditions on the non-classical bending behavior of perforated nanobeams in the presence of surface effects. It is found that, the surface residual stress has more significant effect on the bending deflection compared with the corresponding effect of the surface elasticity, Es. The obtained results are supportive for the design, analysis and manufacturing of perforated nanobeams.

A Study on the Images and Preference of Lighting Space - Focusing on fashion Stores - (조명공간의 이미지 및 선호도 연구 - 패션 매장을 중심으로 -)

  • Seok, Hye-Jung;Han, Seung-Hee;Lee, Jong-Sook
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.17 no.3
    • /
    • pp.1-11
    • /
    • 2015
  • This study comparatively analyzed the images and preference of lighting space using the emotion-based technique in order to effectively use it in clothing shops and fashion marketing. In terms of color temperature for light sources, 2,800K of lamp color, 6,500K of daylight color and 4,200K of white color were used. For the assessment, sensory evaluation technique was used. Then, the study found the followings: In terms of the image of lighting space by light source, different images were observed by light source with significant difference by the evaluation category. For factor analysis by the evaluation category, 7 factors were extracted. Among them, evaluation on lighting space was influenced by the following three images: modern space, elegant space and classical space. In particular, the modern space comprised of the following adjectives had the biggest effect on the assessment of the image of lighting space ('refreshing,' 'transparent,' 'bluish,' 'bright' and 'non-classical') (primary evaluation 30.13%). According to assessment on the preference of lighting space, the respondents' most favorite lighting space was 4,200K while their least favorable one was 6,500K in terms of color temperature. In terms of preference by the image of lighting space, they didn't like 'non-elegant' and 'non-beige' images even though they had the images of modern space. Therefore, it was confirmed that beige and elegant space images have an effect on the preference of lighting space.

  • PDF

A Temporal Finite Element Method for Elasto-Viscoplasticity through the Extended Framework of Hamilton's Principle (확장 해밀턴 이론에 근거한 탄점소성 시스템의 시간유한요소해석법)

  • Kim, Jin-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.1
    • /
    • pp.101-108
    • /
    • 2014
  • In order to overcome the key shortcoming of Hamilton's principle, recently, the extended framework of Hamilton's principle was developed. To investigate its potential in further applications especially for material non-linearity problems, the focus is initially on a classical single-degree-of-freedom elasto-viscoplastic model. More specifically, the extended framework is applied to the single-degree-of-freedom elasto-viscoplastic model, and a corresponding weak form is numerically implemented through a temporal finite element approach. The method provides a non-iterative algorithm along with unconditional stability with respect to the time step, while yielding whole information to investigate the further dynamics of the considered system.

End-Point Position Control of a Flexible Manipulator (유연한 조작기의 끝점 위치 제어)

  • 이재원;주해호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1307-1313
    • /
    • 1992
  • The end-point position control of a flexible manipulator is a non-minimum phase system. The PD feedback of the end-point position is not stable in contrast with that of the hub jangle. However, the system can be stabilized conditionally by the feedback of both the hub rate angle and the end-point position. Even in the non-minimum system, the LQG/LTR control law is more systmatic controller design method than the classical control law which uses a root-locus technique.

Non-Linear Torsional Oscillations of a System Incorporating a Hooke's Joint (훅스 조인트로 연결된 축계의 비선형 비틀림 진동)

  • Chang, Seo-Il;Lee, Jang-Moo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.110-115
    • /
    • 1995
  • In this paper, the problem of non-linear torsional oscillation of a system incorporating a Hooke's joint is studied. Classical perturbation methods including higher order averaging and bifurcation theory are adopted for analysis. The equation of motion derived by Porter[1] is presented and the type of the system is identified. It has been found that two important cases deserve extensive study. Method of higher order averaging which is a main research tool in this study is introduced briefly. The averaged equations are studied analyticallyand numerically and the method of averaging has been found to be effective to study complex non-linear system.

  • PDF