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1 Introduction

In this paper, the problem of non-linear torsional oscillation of a
system incorporating a Hooke’s joint is studied. Classical pertur-
bation methods including higher order averaging and bifurcation
theory are adopted for analysis.

The equation of motion derived by Porter [1] is presented and
the type of the system is identified. It has been found that two
important cases deserve extensive study. Method of higher order
averaging which is a main research tool in this study is intro-
duced briefly. The averaged equations are studied analytically
and numerically and the method of averaging has been found to
be effective to study complex non-linear system.

2 Formulation of the problem

As shown in figure 1, the system under investigation consists of
a rigid body of moment of inertia I, which is driven through a
Hooke's joint and two torsionally flexible shafts. The shafts are
uniform along the length and the torsional stiffnesses of the input
and output shafts are s; and s3, respectively. The input angular
velocity, §2, is kept to be constant. It is assumed that the source of
energy loss of the system is the viscous damping, ¢, exerted to the
rotating body, I. The angular misalignment, A of the two shafts,
is assumed to be small and this assumption makes it possible to
consider this system as a weakly non-linear system.

For the Hooke’s joint, the well-known relation between the
input, output angles and misalignment is

tana = cosAtan 3 , (n
from which it can be shown that
3 cos A
z @

o« ~ 1—sin®Acosta ’
where the primes denote differentiation with respect to ¢. If it is
assumed that no energy is dissipated at the Hooke’s joint,

82(8-6)F =8 (U —a)d . (3)

If the angle of rotation of the rigid body, I, is 6, its equation of
motion can be written as

18"+ o8 =8, (5 —6) . ()
Through the same procedure as in [1], an equation of motion

of the relative torsional displacement, i.e., the twist of the input
shaft can be obtained from equations (2), (3) and (4) as follows:
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K2z +2v K (¢ +p)

€ [{(p— g) cos(2r+271)— g}i

—p (F+1)%sin(2z+27)
+ {0-pisn@e+2r)+2(1-p)(F+ 1) cos(22 +27)

—gK"’(1+cos(2.t+2r))}x

+2 (1 —p)z (£ +1)sin(2x +27)] = 0,

N
+

+

(5)

where  is the relative torsional displacement of the input shaft,

K is the ratio of linear natural frequency w, and input angular

velocity, 2, p is the ratio of the output shaft stiffness, s;, and the

stiffness of the whole linear system, s; +s3. and the dot represents

differentiation with respect to , which is equal to Q¢. € has been

set tosin? A, and v is 5=7. When there is no angular misalignment,

i.e., when ¢ = sin? A = 0, equation (5) reduces to the equation of
motion for damped free oscillation, and the twist of input shaft,

z, will diminish gradually as expected.

To identify the type of the system (5) more easily, we expand
the trigonometric functions in equation (5) in Taylor series and
convert it into the form & + f(x,2,t) = 0. Then it can be written
as

i + K2z+2vK(é+p)
+ €(—psin(27) — 4zpcos(27) + 2 sin(27)
+22% sin(27) + 6p2? sin(27)
—223K? cos(2r) - 8pri®cos(2r)---) = 0 (6)

As shown in equation (6), there are linear and non-linear para-
metric excitations and external excitations. Since the frequency of
the parametric excitations is 2, parametric resonances can occur
for the cases, K ~ 1,2,3,4,--- [3]. Among them, the most im-
portant cases, K ~ 1 and K = 2 are chosen for this study. When
K = 1, the parametric primary resonance will play an important
role in the response of the system, but when K = 2, the reso-
nance due to external excitation as well as parametric secondary
resonance will give significant contribution to the response of the
system. It is also noted that the stiffness ratio, p, acts as the
amplitudes of external and parametric excitations.

Before analytical and numerical works are presented, a rep-
resentative non-stationary response of the original system, equa-
tion (), is shown in figure 2. The response has been obtained by
direct-time integration of equation (5) with gradually increasing
or decreasing the angular velocity Q of the input shaft. It clearly
shows that large torsional vibrations occur around K =~ 1 and
R =~2
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3 Analysis

3.1 Bifurcation set for parametric instability

General parametrically excited system has been known to have fi-
nite responses within some regions in parameter space [3]. The bi-
furcation sets or Strutt diagrams which give the criteria for the on-
set of the finite response can be obtained by utilizing Floguet the-
ory [3, 4]. Since the Floquet theory describes the behavior of linear
ordinary differential equations in the form z + f(t)z + g(t)z = 0.
equations (3) or (6) is linearized and non-homogeneous terms in-
cluding external excitations are removed from the linearized equa-
tion of motion. Then the linear ordinary differential equation is
in the desired form. A variety of methods including Hill’s deter-
minant, method of strained parameters, method of multiple time
scales and method of averaging etc. can be applied to the linear
ordinary differential equation with periodic coefficients to obtain
the bifurcation sets [4]. In this work, the method of strained pa-
rameters has been adopted to obtain explicit expressions for the
bifurcation sets.

When K = 1, the variable and parameter in equation (6) are
rescaled as:

T =€,V = €l (7)
Then equation (6) is converted to
$+ K%z 4+ 2uKp - psin(2r) + O(¢) = 0. (8)
Via a transformation,

P : 2pp
KT 92 sin 27 = (9)

z=y+
equation (8) becomes
i+ K’y +0(e) =0, (10)

where O(¢) terms include external excitations and constant terms.
After the external excitations and the constant terms are removed,
the method of strained parameters can be applied to give the
bifurcation set as follows:

K? =124+ L (P -~ 16;12)§

)
+ ¢ {% (76% + 56p — 32 — 644%) + 4§ (6* - 1647) *}
+ 0(&) (11)

When K = 2, the variable and parameter in equation (6) are
rescaled as:

x:cz,v=52p, (12)
Then equation (6) is converted to

#+ K?z — psin(27) + O(¢) = 0. (13)
Again the external excitations including —psin 27 and constant
terms are removed. Now the method of strained parameters can
be applied to give the bifurcation set as

K? =22
2 (1,2 1 2 2 2%
+ |zl +18p—6):t2{(3p —6p—2)" - 1024%}

+ 0() (14)

Removing external excitations and constant terms simply from
equations (10) and (13) to obtain linear ordinary differential equa-
tions in the form # + f(7)z + g(r)z = 0 might be too crude ap-
proximation, but the result can be tested by doing direct-time
integration of the original equation of motion (5).

The bifurcation sets obtained from equations (11) and (14)
are shown in figures 3 and 4. In figure 3, it can be found that the
parametric instability is more probable for K ~ 1 than for K ~ 2

just like general parametrically excited system. In figure 4, the
bifurcation sets for K & 1 are plotted in O(¢), O(e?) and O(¢3).
The symbols o and x are the results of direct-time integration of
the origianal equation of motion (5) and denote the existence and
diminishing of the steady-state finite parametric response, respec-
tively. It shows that the higher order bifurcation sets give more
accurate criteria for the onset of parametric resonance. Prelimi-
nary result of direct-time integration of the original equation (5)
for the case K & 2 shows that there is no qualitative change in
the response when the values of the parameters are varied across
the bifurcation set.

In the following it will be shown that method of averaging can
be used to get the bifurcation sets for the parametric instabilities
and that, although in different form, the graphic representations
of them are very close to those obtained by the method of strained
parameters.

3.2 Higher order averaging

The method of averaging [5, 6] has been an important research
tool for the study of weakly non-linear system. Although the
theory has been developed to general nth order averaging, it has
been applied mainly to the first order and rarely to the second
order [7. 8]. In this study, third order averaging has been found
necessary to catch non-linear characteristic of the system and the
procedure for the third order averaging is explained briefly in the
following. For more general explanation, the readeres are referred
to Murdock [9] and Guckenheimer and Holmes [10].

The method of averaging in first order consists of replacing a
system in 2r-periodic standard form

= ef(x,t,¢€), (13)
by an autonomous system
i =ef(2), (18)
where
B 1 7
flz) = 2—1;/; f(z.t,0)dt. (17

The procedure consists of two steps. The first step is a near-
identity transformation such that
z=y+eu(yt)+ Cu(y )+ Sua(y,t) + O () (18)

where u; is 2n-periodic in t. Expanding equation (15) in powers
of ¢ gives
b= efi(z.t)+ Efa(z. 1) + 2 fa(z, 1) + 2 f(z, 1, €) (19)

Via the near-identity transformation (equation (18)), equation (19)
becomes

¥ =eq1(y, 1)+ €92(y,1) + 95y, 1) + *d(w, 1, ©) (20)
Differentiating equation (18) with respect to t gives
L . 8u1 . 3"1 2 (6ug . 0112)
& = y+6<ayy+ 0t>+€ 8yy+ F
Bug . Bus)
3 (0us . Oug 4
+¢€ (6yy+ 5 +0(%) (21)

Substituting equation (20) into equation (21) gives

& = 5(91+%\ +é (92+%91+ %)
/7
+€8 (93 + %iye + %291 + 3&&) +0(e*) (22)

Substituting equation (18) into equation (19) gives
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efi + E(fiur + f2)
e (fua + 3+ fu+ ) +O() (28)

r =

By equating coefficients of the same powers of ¢ in equations (22)
and (23), we can obtain following relations for g1(y,?), g2(y. ) and
gs(y.t) in equation (20):

Bu1
- T

alyt) = h £

Bu Is]
eyt) = fotflu- —Ey_xgl - %‘tz, (24)
1 Ou du 7
ga(y.t) = fa+fluzt §f{'uf + fou - 6_;92 - _6?291 - gtj

Now u;’s are chosen so that g;(y,t) = gi(y), i.e., g;’s are indepen-
dent of time. From the first of equation (24),

i
S = Ab-awy
= fily.t) - aily). (25)
Thus
12
)= [ A0 -5 di+ i) (26)
and the 27-periodicity of u(¢) gives
ar
9:1(9) = &~ | Fily,s) ds, (27)

which indicates that gi(y) is the average of fi(y,t). Similarly it
can be shown that

0@ = [ ft -0
2 b A 2 11 3y g1 as,
1 2r
g3ly) = 2 fa+ fluz
T
ous Dz

1
+§f{'1‘§ + fouy — By gz — Egl ds. (28)

Therefore the transformed equation (20) can be rewritten as fol-
lows:
§ = egi(y) + 2g2(y) + 93(y) + *g(y, 1. ), (29)

which is autonomous up to third order.

3.3 Averaged equation when R =~ 1.

The variable and parameters in equation {6) are rescaled with the
small parameter ¢, which is the angular misalignment, as follows:

r = €z,
v = e, (30)
and a detuning parameter is introduced as
K2=1%+¢0. (31)

Then equation (6) becomes
2+ z— psin(27) + 2up
+eF1(z,7) + € Fa(z, 1) + EFs(z, 1) + O(e*) = 0, (32)
where Fy’s include various linear and non-linear terms.

By letting #; = 2,22 = £ , we can express equation (32) in
vector form as follows:

X=AX + Qi+ efi+Efa+ S fa+ O(eh), (33)

X = (;;),A=[_01 é]vQF(psin(zB)—‘zpp)‘

e () ()5 ()
Let

X=er"Y + Q.. (34)
where

0, = < -%psin(?f) —2up ) ’

~3pcos(27)
( ) ) i
Y2
Transforming equation (33) via equation (34) gives the equation
in the standard form { equation (15) or equation (19) ) as follows:

Y =

= eq(y.7) + Ega(y.7) + g3y, ) + O(e) (35)
where g;(y,7) = ™47 fi(y, 7). By applying equations (27), (28)
and (29) to equation (35), we can obtain an averaged equation up
to third order as follows:

¥ = eqi(y) + €92(y) + 93(y) (36)
Or
g1 = Ay + Aays + Aayt + A4y§ + Asy1ye + Aeyg + Ar,
g2 = Buip + Bowo + Bsti + Bavd + Bsyiwa + Bsyl + Br,

(37)
where the coefficients A;’s and B;’s are functions of the param-
eters, €, u and p and the lengthy expressions are not presented
here. Among them, Az, A4, As, As, B3, Bq, Bs and Bg are the co-
efficients for the quadratic and cubic non-linearities and can be
obtained by averaging up to the third order.

Representative bifurcation diagrams of equations (37) are shown
in figure 5. At lower damping, multiple stable solutions co-exist
and initial conditions will decide the final response of the system.
Two unstable saddle type equillibrium solutions are also shown in
the bifurcation diagrams. As shown in the phase plot (figure 5c),
they are important in deciding basin boundaries.

As stated earlier, the method of averaging can be applied to
get the bifurcation sets for the parametric instabilities. Equation
(10), which is in the form § + f(7)y + g(r)y = 0 has y = 0 as
a solution. Then the averaged equations of the linear ordinary
differential equation with periodic coefficients will be in the form

Ay + Aaya,
Biy1 + Boyo.

n =
2

(38)

The condition for the trivial solution y = y1 = y2 = 0 to change
the stability is A; B, — A2 By = 0. which is also the bifurcation set
for the parametric primary instability. Although its expression is
in the complicated implicit form f(K.e,p,u) = 0or f(o. €, p, ) =
0, it has been shown that its graphical representatin is very close
to that obtained by the method of strained parameters.

3.4 Averaged equation when A =~ 2.

The variable and parameters in equation {6) are rescaled with the
small parameter ¢, which is the angular misalignment, as follows:

r = ez,
2

= €pu,
= €,

(39)

It is noted that v and p are rescaled in different order from that
for the case, K ~ 1, and a detuning parameter is introduced as

K?= 22 +e¢o. (40)
Then equation (8) becomes
F4+ 24 eF(z.7) 4+ EF (7)) + SRz, 7))+ O(e*) = 0, (41)
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where F;’s include various linear and non-linear terms.
By letting 1 = 2,25 = £ . we can express equation (41) in
vector form as follows:

X =AX 4+ ¢fi+ 2 fa+ Ef3 + O(eh), (42)
where
. Z — 0 1
vo= (Iz>'A_[—’-’2 0]
0 0 _ 0
H o= (—F1 >,fz=<_F2 ) fa—(_Fa)
Let
X = ey (43)
where

v = (yx)'
Y2

Transforming equation (42) via equation (43) gives the equation
in the standard form ( equation (15) or equation (19) ) as follows:

y=eqi(y.7) + €920y, 7) + Sgaly. 7) + OY) (44)

where g;(y.7) = €~47 f;(y. 7). By applying equations (27), (28)
and (29) to equation (44), we can obtain an averaged equation up
to third order as follows:

§=eqi(y) + *galy) + galy) (45)
Or
o= A+ Aoy + Asyf + Agl + As,
g2 = Biyi + Baya + Bsyiyo + Ba, (46)

where the coefficients 4;'s and B;’s are also functions of the pa-
rameters, ¢, u and p and the lengthy expressions are not presented
here. Among them, 43.44 and By are the coefficients for the
quadratic non-linearities and those can be obtained by averaging
up to the third order.

Representative bifurcation diagrams of equations (46} are shown
in figure 6. At lower damping, multiple stable solutions co-exist
and initial conditions will decide the final response of the system.
Similarly as in the case, K’ = 1. two unstable saddle type equillib-
rium solutions are shown in the bifurcation diagrams. As shown
in the phase plot (figure 6b). they are important in deciding basin
boundaries.

4 Conclusions and Recommendations

The original complex non-linear system has been found to have
the parametric excitations as well as the external excitations. The
parametric primary resonance is important for the case K & 1 and
the external resonance is also important for the case K =~ 2. By
the use of the method of strained parameters, the bifurcation sets
for the parametric resonances have been obtained and compared
with those obtained by the method of averaging.

The method of averaging has been found to be an effective tool
to study the complex non-linear system to get the bifurcation sets
and the bifurcation diagrams of the system.

While in numerical experiment for the original equation (5),
beating or modulated responses have been found and in figure 7 is
shown representative time series, a phase plot and a correspond-
ing Poincaré section. These seemingly unsteady-state responses
are found for large values of the perturbation parameters, €. For
the large values of ¢, the averaged equations don’t seem to ap-
proximate the original equation successfully. Therefore a method
for strongly non-linear system is necessary for the study of these
periodic steady-state response.
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Figure 1: Diagram of the system.
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Figure 4: Bifurcation sets for v = 0.01 and p = 0.50 in O(e), O(¢?)
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Figure 2: Non-stationary responses of the original system, equa- o
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Figure 3: Bifurcation sets for v = 0.01 and p = 0.25, 0.50 and 1.0.

-114 -



3.0

-3.0

Cdtal ; ; \

3.0 X 3.0

Figure 5: For K = 1, (a) bifurcation diagrams for » = 0.01,p
0.6,¢ = 0.09, (b) bifurcation diagrams for » = 0.01,p = 0.6,¢

0.19, (c) phase plot for v = 0.01,p = 0.6,¢ = 0.19,0 = 0.1.
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Figure 6: For K =~ 2, (a) bifurcation diagrams for v = 2.0 x
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Figure 7: Periodic response for v = 0.01,p = 0.2,¢ = 0.33,K =
1.98, (8) X vs. 7, (b) phase plot in X — X, () a corresponding



