Browse > Article
http://dx.doi.org/10.12989/anr.2019.7.1.051

Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials  

Karami, Behrouz (Department of Mechanical Engineering, Marvdasht Branch, Islamic Azad University)
Karami, Sara (Department of Geology, Shiraz Branch, Islamic Azad University)
Publication Information
Advances in nano research / v.7, no.1, 2019 , pp. 51-61 More about this Journal
Abstract
This paper develops a four-unknown refined plate theory and the Galerkin method to investigate the size-dependent stability behavior of functionally graded material (FGM) under the thermal environment and the FGM having temperature-dependent material properties. In the current study two scale coefficients are considered to examine buckling behavior much accurately. Reuss micromechanical scheme is utilized to estimate the material properties of inhomogeneous nano-size plates. Governing differential equations, classical and non-classical boundary conditions are obtained by utilizing Hamiltonian principles. The results showed the high importance of considering temperature-dependent material properties for buckling analysis. Different influencing parametric on the buckling is studied which may help in design guidelines of such complex structures.
Keywords
temperature-dependent heterogeneous materials; refined plate theory; nonlocal strain gradient theory; thermal environment; Galerkin method;
Citations & Related Records
Times Cited By KSCI : 22  (Citation Analysis)
연도 인용수 순위
1 Karami, B., Shahsavari, D., Karami, M. and Li, L. (2018i), "Hygrothermal wave characteristic of nanobeam-type inhomogeneous materials with porosity under magnetic field", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.
2 Karami, B., Shahsavari, D. and Li, L. (2018j), "Hygrothermal wave propagation in viscoelastic graphene under in-plane magnetic field based on nonlocal strain gradient theory", Physica E: Low-dimensional Syst. Nanostruct., 97, 317-327.   DOI
3 Karami, B., Shahsavari, D. and Li, L. (2018k), "Temperaturedependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Therm. Stress., 41(4), 483-499.   DOI
4 Karami, B., Shahsavari, D., Nazemosadat, S.M.R., Li, L. and Ebrahimi, A. (2018l), "Thermal buckling of smart porous functionally graded nanobeam rested on Kerr foundation", Steel Compos. Struct., Int. J., 29(3), 349-362.
5 Karami, B., Shahsavari, D., Janghorban, M., Dimitri, R. and Tornabene, F. (2019a), "Wave Propagation of Porous Nanoshells", Nanomaterials, 9(1), 22.   DOI
6 Karami, B., Shahsavari, D., Li, L., Karami, M. and Janghorban, M. (2019b), "Thermal buckling of embedded sandwich piezoelectric nanoplates with functionally graded core by a nonlocal second-order shear deformation theory", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(1), 287-301.   DOI
7 Li, Q., Iu, V. and Kou, K. (2009), "Three-dimensional vibration analysis of functionally graded material plates in thermal environment", J. Sound Vib., 324(3), 733-750.   DOI
8 Li, L., Hu, Y. and Ling, L. (2015), "Flexural wave propagation in small-scaled functionally graded beams via a nonlocal strain gradient theory", Compos. Struct.res, 133, 1079-1092.   DOI
9 Askes, H. and Aifantis, E.C. (2009), "Gradient elasticity and flexural wave dispersion in carbon nanotubes", Phys. Rev. B, 80(19), 195412.   DOI
10 Arani, A.G., Pourjamshidian, M. and Arefi, M. (2017), "Influence of electro-magneto-thermal environment on the wave propagation analysis of sandwich nano-beam based on nonlocal strain gradient theory and shear deformation theories", Smart Struct. Syst., Int. J., 20(3), 329-342.
11 Aydogdu, M. and Arda, M. (2016), "Forced vibration of nanorods using nonlocal elasticity", Adv. Nano Res., Int. J., 4(4), 265-279.   DOI
12 Nami, M.R. and Janghorban, M. (2014a), "Resonance behavior of FG rectangular micro/nano plate based on nonlocal elasticity theory and strain gradient theory with one gradient constant", Compos. Struct., 111, 349-353.   DOI
13 Li, L., Tang, H. and Hu, Y. (2018), "The effect of thickness on the mechanics of nanobeams", Int. J. Eng. Sci., 123, 81-91.   DOI
14 Lim, C., Zhang, G. and Reddy, J. (2015), "A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation", J. Mech. Phys. Solids, 78, 298-313.   DOI
15 Malikan, M., Nguyen, V.B. and Tornabene, F. (2018), "Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory", Mater. Res. Express, 5(7), 075031.   DOI
16 Nami, M.R. and Janghorban, M. (2014b), "Wave propagation in rectangular nanoplates based on strain gradient theory with one gradient parameter with considering initial stress", Modern Phys. Lett. B, 28(3), 1450021.   DOI
17 Barretta, R., Faghidian, S.A., Luciano, R., Medaglia, C. and Penna, R. (2018a), "Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models", Compos. Part B: Eng., 154, 20-32.   DOI
18 Barati, M.R. (2017), "Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities", Adv. Nano Res., Int. J., 5(4), 393-414.   DOI
19 Barati, M.R. (2018), "A general nonlocal stress-strain gradient theory for forced vibration analysis of heterogeneous porous nanoplates", Eur. J. Mech.-A/Solids, 67, 215-230.   DOI
20 Barretta, R. and de Sciarra, F.M. (2018), "Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams", Int. J. Eng. Sci., 130, 187-198.   DOI
21 Apuzzo, A., Barretta, R., Luciano, R., de Sciarra, F.M. and Penna, R. (2017), "Free vibrations of Bernoulli-Euler nano-beams by the stress-driven nonlocal integral model", Compos. Part B: Eng., 123, 105-111.   DOI
22 Barretta, R., Luciano, R., de Sciarra, F.M. and Ruta, G. (2018b), "Stress-driven nonlocal integral model for Timoshenko elastic nano-beams", Eur. J. Mech.-A/Solids.
23 Reddy, J. and Chin, C. (1998), "Thermomechanical analysis of functionally graded cylinders and plates", J. Therm. Stress., 21(6), 593-626.   DOI
24 Nami, M.R., Janghorban, M. and Damadam, M. (2015), "Thermal buckling analysis of functionally graded rectangular nanoplates based on nonlocal third-order shear deformation theory", Aerosp. Sci. Technol., 41, 7-15.   DOI
25 Nayebi, A., Tirmomenin, A. and Damadam, M. (2015), "Elasto-plastic analysis of a functionally graded rotating disk under cyclic thermo-mechanical loadings considering continuum damage mechanics", Int. J. Appl. Mech., 7(2), 1550026.   DOI
26 Phung-Van, P., Thanh, C.-L., Nguyen-Xuan, H. and Abdel-Wahab, M. (2018), "Nonlinear transient isogeometric analysis of FGCNTRC nanoplates in thermal environments", Compos. Struct., 201, 882-892.   DOI
27 Shahrjerdi, A., Mustapha, F., Bayat, M. and Majid, D. (2011), "Free vibration analysis of solar functionally graded plates with temperature-dependent material properties using second order shear deformation theory", J. Mech. Sci. Technol., 25(9), 2195.   DOI
28 Romano, G. and Barretta, R. (2017), "Nonlocal elasticity in nanobeams: the stress-driven integral model", Int. J. Eng. Sci., 115, 14-27.   DOI
29 Sahmani, S., Aghdam, M.M. and Rabczuk, T. (2018), "Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory", Compos. Struct., 186, 68-78.   DOI
30 Shafiei, N. and She, G.-L. (2018), "On vibration of functionally graded nano-tubes in the thermal environment", Int. J. Eng. Sci., 133, 84-98.   DOI
31 Shahsavari, D., Karami, B. and Li, L. (2018b), "Damped vibration of a graphene sheet using a higher-order nonlocal straingradient Kirchhoff plate model", Comptes Rendus Mecanique.
32 Shahsavari, D. and Janghorban, M. (2017), "Bending and shearing responses for dynamic analysis of single-layer graphene sheets under moving load", J. Brazil. Soc. Mech. Sci. Eng., 39(10), 3849-3861.   DOI
33 Shahsavari, D., Karami, B., Janghorban, M. and Li, L. (2017), "Dynamic characteristics of viscoelastic nanoplates under moving load embedded within visco-Pasternak substrate and hygrothermal environment", Mater. Res. Express, 4(8), 085013.   DOI
34 Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018a), "On the shear buckling of porous nanoplates using a new sizedependent quasi-3D shear deformation theory", Acta Mechanica, 229(11), 4549-4573.   DOI
35 Shahsavari, D., Karami, B. and Li, L. (2018c), "A high-order gradient model for wave propagation analysis of porous FG nanoplates", Steel Compos. Struct., Int. J., 29 (1), 53-66.
36 She, G.-L., Yan, K.-M., Zhang, Y.-L., Liu, H.-B. and Ren, Y.-R. (2018b), "Wave propagation of functionally graded porous nanobeams based on non-local strain gradient theory", Eur. Phys. J. Plus, 133(9), 368.   DOI
37 Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., Int. J., 55(4), 743-763.   DOI
38 Shahsavari, D., Karami, B. and Mansouri, S. (2018d), "Shear buckling of single layer graphene sheets in hygrothermal environment resting on elastic foundation based on different nonlocal strain gradient theories", Eur. J. Mech.-A/Solids, 67, 200-214.   DOI
39 Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018e), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149.   DOI
40 She, G.-L., Ren, Y.-R., Yuan, F.-G. and Xiao, W.-S. (2018a), "On vibrations of porous nanotubes", Int. J. Eng. Sci., 125, 23-35.   DOI
41 She, G.-L., Yuan, F.-G. and Ren, Y.-R. (2018c), "On wave propagation of porous nanotubes", Int. J. Eng. Sci., 130, 62-74.   DOI
42 She, G.-L., Yuan, F.-G., Ren, Y.-R., Liu, H.-B. and Xiao, W.-S. (2018d), "Nonlinear bending and vibration analysis of functionally graded porous tubes via a nonlocal strain gradient theory", Compos. Struct., 203, 614-623.   DOI
43 She, G.-L., Yuan, F.-G., Karami, B., Ren, Y.-R. and Xiao, W.-S. (2019), "On nonlinear bending behavior of FG porous curved nanotubes", Int. J. Eng. Sci., 135, 58-74.   DOI
44 Shimpi, R. and Patel, H. (2006), "A two variable refined plate theory for orthotropic plate analysis", Int. J. Solids Struct., 43(22-23), 6783-6799.   DOI
45 Taghizadeh, M., Ovesy, H. and Ghannadpour, S. (2015), "Nonlocal integral elasticity analysis of beam bending by using finite element method", Struct. Eng. Mech., Int. J., 54(4), 755-769.   DOI
46 Bensaid, I. and Guenanou, A. (2017), "Bending and stability analysis of size-dependent compositionally graded Timoshenko nanobeams with porosities", Adv. Mater., Res., Int. J., 6(1), 45-63.
47 Barzoki, A.A.M., Loghman, A. and Arani, A.G. (2015), "Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium", Struct. Eng. Mech., Int. J., 53(3), 497-517.   DOI
48 Bensaid, I. (2017), "Arefined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams", Adv. Nano Res., Int. J., 5(2), 113-126.   DOI
49 Bensaid, I. and Bekhadda, A. (2018), "Thermal stability analysis of temperature dependent inhomogeneous size-dependent nanoscale beams", Adv. Mater. Res., Int. J., 7(1), 363-378.
50 Bensaid, I. and Kerboua, B. (2017), "Interfacial stress analysis of functionally graded beams strengthened with a bonded hygrothermal aged composite plate", Compos. Interf., 24(2), 149-169.   DOI
51 Bensaid, I., Cheikh, A., Mangouchi, A. and Kerboua, B. (2017), "Static deflection and dynamic behavior of higher-order hyperbolic shear deformable compositionally graded beams", Adv. Mater Res., Int. J., 6(1), 13-26.
52 Bensaid, I., Bekhadda, A. and Kerboua, B. (2018a), "Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory", Adv. Nano Res., Int. J., 6(3), 279-298.
53 Bensaid, I., bekhadda, A., Kerboua, B. and Abdelmadjid, C. (2018b), "Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT", Wind Struct., Int. J., 27(6), 369.380.
54 Damadam, M., Moheimani, R. and Dalir, H. (2018), "Bree's diagram of a functionally graded thick-walled cylinder under thermo-mechanical loading considering nonlinear kinematic hardening", Case Studies Thermal Eng., 12, 644-654.   DOI
55 Touloukian, Y.S. and Ho, C. (1970), "Thermal expansion. Nonmetallic solids", In: Thermophysical Properties of Matter-The TPRC Data Series, New York: IFI/Plenum, 1970-, (Edited by Touloukian), YSI e (series ed.); Ho, CYI e (series tech. ed.).
56 Chamkha, A.J., Molana, M., Rahnama, A. and Ghadami, F. (2018), "On the nanofluids applications in microchannels: a comprehensive review", Powder Technology.
57 Tounsi, A., Benguediab, S., Adda, B., Semmah, A. and Zidour, M. (2013), "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano Res., Int. J., 1(1), 1-11.   DOI
58 Tufekci, E., Aya, S.A. and Oldac, O. (2016), "A unified formulation for static behavior of nonlocal curved beams", Struct. Eng. Mech., Int. J., 59(3), 475-502.   DOI
59 Wu, Z., Cheung, Y., Lo, S. and Chen, W. (2008), "Effects of higher-order global-local shear deformations on bending, vibration and buckling of multilayered plates", Compos. Struct., 82(2), 277-289.   DOI
60 Zenkour, A.M. (2016), "Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal firstorder theory", Adv. Nano Res., Int. J., 4(4), 309-326.   DOI
61 Ebrahimi, F., Barati, M.R. and Dabbagh, A. (2016), "A nonlocal strain gradient theory for wave propagation analysis in temperature-dependent inhomogeneous nanoplates", Int. J. Eng. Sci., 107, 169-182.   DOI
62 El-Borgi, S., Rajendran, P., Friswell, M., Trabelssi, M. and Reddy, J. (2018), "Torsional vibration of size-dependent viscoelastic rods using nonlocal strain and velocity gradient theory", Compos. Struct., 186, 274-292.   DOI
63 Eltaher, M., Khater, M., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano. Res., Int. J., 4(1), 51-64.
64 Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33.   DOI
65 Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23.   DOI
66 Ghayesh, M.H. and Farajpour, A. (2018), "Nonlinear mechanics of nanoscale tubes via nonlocal strain gradient theory", Int. J. Eng. Sci., 129, 84-95.   DOI
67 Ghayesh, M.H. and Farokhi, H. (2015), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73.   DOI
68 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B: Eng., 60, 423-439.   DOI
69 Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Threedimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14.   DOI
70 Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013b), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B: Eng., 50, 318-324.   DOI
71 Gupta, A. and Talha, M. (2017), "Influence of Porosity on the Flexural and Free Vibration Responses of Functionally Graded Plates in Thermal Environment", Int. J. Struct. Stabil. Dyn., 1850013.   DOI
72 Heydari, A. and Shariati, M. (2018), "Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium", Struct. Eng. Mech., Int. J., 66(6), 737-748.
73 Houari, M.S.A., Bessaim, A., Bernard, F., Tounsi, A. and Mahmoud, S. (2018), "Buckling analysis of new quasi-3D FG nanobeams based on nonlocal strain gradient elasticity theory and variable length scale parameter", Steel Compos. Struct., Int. J., 28(1), 13-24.
74 Huang, X.-L. and Shen, H.-S. (2004), "Nonlinear vibration and dynamic response of functionally graded plates in thermal environments", Int. J. Solids Struct., 41(9-10), 2403-2427.   DOI
75 Kant, T. and Swaminathan, K. (2001), "Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories", J. Sound Vib., 241(2), 319-327.   DOI
76 Kar, V.R. and Panda, S.K. (2015a), "Large deformation bending analysis of functionally graded spherical shell using FEM", Struct. Eng. Mech., Int. J., 53(4), 661-679.   DOI
77 Karami, B., Janghorban, M. and Li, L. (2018a), "On guided wave propagation in fully clamped porous functionally graded nanoplates", Acta Astronautica, 143, 380-390.   DOI
78 Kar, V.R. and Panda, S.K. (2015b), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., Int. J., 18(3), 693-709.   DOI
79 Karami, B. and Janghorban, M. (2016), "Effect of magnetic field on the wave propagation in nanoplates based on strain gradient theory with one parameter and two-variable refined plate theory", Modern Phys. Lett. B, 30(36), 1650421.   DOI
80 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25 (3), 361-374.
81 Karami, B., Janghorban, M., Shahsavari, D. and Tounsi, A. (2018b), "A size-dependent quasi-3D model for wave dispersion analysis of FG nanoplates", Steel Compos. Struct., Int. J., 28(1), 99-110.
82 Karami, B., Janghorban, M. and Tounsi, A. (2018c), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Engineering with Computers.
83 Karami, B., Janghorban, M. and Tounsi, A. (2018d), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216.
84 Karami, B., Janghorban, M. and Tounsi, A. (2018e), "Variational approach for wave dispersion in anisotropic doubly-curved nanoshells based on a new nonlocal strain gradient higher order shell theory", Thin-Wall. Struct., 129, 251-264.   DOI
85 Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2018h), "Wave dispersion of mounted graphene with initial stress", Thin-Wall. Struct., 122, 102-111.   DOI
86 Karami, B., Shahsavari, D. and Janghorban, M. (2018f), "A comprehensive analytical study on functionally graded carbon nanotube-reinforced composite plates", Aerosp. Sci. Technol., 82, 499-512.   DOI
87 Karami, B., Shahsavari, D. and Janghorban, M. (2018g), "Wave propagation analysis in functionally graded (FG) nanoplates under in-plane magnetic field based on nonlocal strain gradient theory and four variable refined plate theory", Mech. Adv. Mater. Struct., 25(12), 1047-1057.   DOI