• Title/Summary/Keyword: non-classical

Search Result 476, Processing Time 0.024 seconds

Electronic properties of graphene nanoribbons with Stone-Wales defects using the tight-binding method

  • M.W. Chuan;S.Z. Lok;A. Hamzah;N.E. Alias;S. Mohamed Sultan;C.S. Lim;M.L.P Tan
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.1-15
    • /
    • 2023
  • Driven by the scaling down of transistor node technology, graphene became of interest to many researchers following the success of its fabrication as graphene nanoribbons (GNRs). However, during the fabrication of GNRs, it is not uncommon to have defects within the GNR structures. Scaling down node technology also changes the modelling approach from the classical Boltzmann transport equation to the quantum transport theory because the quantum confinement effects become significant at sub-10 nanometer dimensions. The aim of this study is to examine the effect of Stone-Wales defects on the electronic properties of GNRs using a tight-binding model, based on Non-Equilibrium Green's Function (NEGF) via numeric computation methods using MATLAB. Armchair and zigzag edge defects are also implemented in the GNR structures to mimic the practical fabrication process. Electronic properties of pristine and defected GNRs of various lengths and widths were computed, including their band structure and density of states (DOS). The results show that Stone-Wales defects cause fluctuation in the band structure and increase the bandgap values for both armchair GNRs (AGNRs) and zigzag GNRs (ZGNRs) at every simulated width. In addition, Stone-Wales defects reduce the numerical computation DOS for both AGNRs and ZGNRs. However, when the lengths of the structures increase with fixed widths, the effect of the Stone-Wales defects become less significant.

Effect of visco-Pasternak foundation on thermo-mechanical bending response of anisotropic thick laminated composite plates

  • Fatima Bounouara;Mohamed Sadoun;Mahmoud Mohamed Selim Saleh;Abdelbaki Chikh;Abdelmoumen Anis Bousahla;Abdelhakim Kaci;Fouad Bourada;Abdeldjebbar Tounsi;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.693-707
    • /
    • 2023
  • This article investigates the static thermo-mechanical response of anisotropic thick laminated composite plates on Visco-Pasternak foundations under various thermal load conditions (linear, non-linear, and uniform) along the transverse direction (thickness) of the plate, while keeping the mechanical load constant. The governing equations, which represent the thermo-mechanical behavior of the composite plate, are derived from the principle of virtual displacements. Using Navier's type solution, these equations are solved for the composite plate with simply supported condition. The Visco-Pasternak foundation type is included by considering the impact of the damping on the classical foundation model, which is modeled by Winkler's linear modulus and Pasternak's shear modulus. The excellent accuracy of the present solution is confirmed by comparing the results with those available in the literature. The study investigates the impact of geometric ratios, thermal expansion coefficient ratio, damping coefficient and foundation parameters on the thermo-mechanical flexural response of the composite plate. Overall, this article provides insights into the behavior of composite plates on visco-Pasternak foundations and may be useful for designing and analyzing composite structures in practical applications.

Crack detection in folded plates with back-propagated artificial neural network

  • Oguzhan Das;Can Gonenli;Duygu Bagci Das
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.319-334
    • /
    • 2023
  • Localizing damages is an essential task to monitor the health of the structures since they may not be able to operate anymore. Among the damage detection techniques, non-destructive methods are considerably more preferred than destructive methods since damage can be located without affecting the structural integrity. However, these methods have several drawbacks in terms of detecting abilities, time consumption, cost, and hardware or software requirements. Employing artificial intelligence techniques could overcome such issues and could provide a powerful damage detection model if the technique is utilized correctly. In this study, the crack localization in flat and folded plate structures has been conducted by employing a Backpropagated Artificial Neural Network (BPANN). For this purpose, cracks with 18 different dimensions in thin, flat, and folded structures having 150, 300, 450, and 600 folding angle have been modeled and subjected to free vibration analysis by employing the Classical Plate Theory with Finite Element Method. A Four-nodded quadrilateral element having six degrees of freedom has been considered to represent those structures mathematically. The first ten natural frequencies have been obtained regarding healthy and cracked structures. To localize the crack, the ratios of the frequencies of the cracked flat and folded structures to those of healthy ones have been taken into account. Those ratios have been given to BPANN as the input variables, while the crack locations have been considered as the output variables. A total of 500 crack locations have been regarded within the dataset obtained from the results of the free vibration analysis. To build the best intelligent model, a feature search has been conducted for BAPNN regarding activation function, the number of hidden layers, and the number of hidden neurons. Regarding the analysis results, it is concluded that the BPANN is able to localize the cracks with an average accuracy of 95.12%.

A Study on the Original Implication and Socio-cultural Usefulness of "One" ('하나'에 내포된 원형적 의미와 사회문화적 활용가치)

  • Lee, Chul-Jin
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.8
    • /
    • pp.199-207
    • /
    • 2019
  • One philosopher said that knowing the identity of one clump of grass on the roadside could reveal all the mysteries of the universe. If you know one, you can know two. If you know two, you can know three. If you know the form, you can know the whole. If you know the image(eidos), you can know the non-image, life, and death. But we are wandering in a dream because we don't know the one clump of grass, "One". For a long time I have been searching for a road to know "One". While studying of the process searching the truth, not only do we reveal logic development making One a language, but also we would like to provide the application of cultural contents applied to that One.

A Stress-Based Gradient Elasticity in the Smoothed Finite Element Framework (평활화 유한요소법을 도입한 응력기반 구배 탄성론)

  • Changkye Lee;Sundararajan Natarajan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.3
    • /
    • pp.187-195
    • /
    • 2024
  • This paper presents two-dimensional boundary value problems of the stress-based gradient elasticity within the smoothed finite element method (S-FEM) framework. Gradient elasticity is introduced to address the limitations of classical elasticity, particularly its struggle to capture size-dependent mechanical behavior at the micro/nano scale. The Ru-Aifantis theorem is employed to overcome the challenges of high-order differential equations in gradient elasticity. This theorem effectively splits the original equation into two solvable second-order differential equations, enabling its incorporation into the S-FEM framework. The present method utilizes a staggered scheme to solve the boundary value problems. This approach efficiently separates the calculation of the local displacement field (obtained over each smoothing domain) from the non-local stress field (computed element-wise). A series of numerical tests are conducted to investigate the influence of the internal length scale, a key parameter in gradient elasticity. The results demonstrate the effectiveness of the proposed approach in smoothing stress concentrations typically observed at crack tips and dislocation lines.

The Effect of High-Fidelity Simulation Practice Related with Classical Education of Medical Surgical Nursing (성인간호학 이론수업과 연계한 High-Fidelity 시뮬레이션 교육의 효과)

  • Chyn, Yeol-eo;Kim, Kyoung-Mi;Hwang, Hye-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.12
    • /
    • pp.8176-8186
    • /
    • 2015
  • This research was conducted for the purpose of developing a high-fidelity simulation education program, applying it to clinical field and analyzing this program's effect on nursing college students in order to solve problems being caused from the gap between the adult nursing theoretical class and practical education. As the analysis method, this study developed a scenario including an algorithm for caring hyperkalemia patients, the evaluation check list, and debriefing according to the adult nursing theoretical class's learning goal and measured the high-fidelity simulation program's effect in using the non-equivalent control group pre-test and post-test design. As the results from the analysis, there secured the simulation education program's general properties and dependent variable's homogeneity in the experimental group and the control group. The nursing simulation practice program for hyperkalemia patients showed slight effect on the experimental group compared to the control group in fields such as nursing practice ability, problem solving ability, critical thinking skills, self-confidence of nursing, and knowledge. (t=-83.313, p<.001, t=-3.169, p=.003, t=-2.473, p=.017, t=-4.036, p<.001, t=-5.044, p<.001). High-Fidelity simulation programs in conjunction with an adult nursing theory classes of nursing students nursing practice ability, problem solving ability, critical thinking skills, self-confidence of nursing, and knowledge. This simulation program may be an effective educational method for nursing practice and also support improved quality of nursing education.

Spreading of motion aftereffect for rotational motion: Evidence of adaptation of global motion detector (회전 운동 잔여 효과의 확산 현상: 전역적 운동 탐지기의 순응에 대한 증거)

  • Kham Keetaek
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.1
    • /
    • pp.17-27
    • /
    • 2005
  • After prolonged viewing of a moving pattern, a stationary pattern can appear to move in the opposite direction, a phenomenon known as motion aftereffect (MAE). Unlike the classical explanation MAE was not confined to an adapted region; instead it can spread to an adjacent region, which was not adapted previously. In order to examine the relative locus of the mechanism responsible for MAE spreading, a rotating harmonic spiral pattern was presented as an adapting stimulus within an annulus window, and then the duration of MAE was measured in both the adapted annulus region and the non-adapted inner region. Two different kinds of test patterns were used: the same and mirror images of the original adapting pattern. An interesting characteristic of a harmonic spiral is that the orientation of a contour at a given location is different from thar of its mirror image by 90 degrees, and consequently the adapting effect of local motion detector is not expected to occur in the mirror image. The results showed that MAE duration in an adapted region was longer in the same image condition than in its mirror image condition, while MAE duration in an non-adapted region was not found to be different between those two different image conditions. These results suggest that MAE spreading might be produced by the adaptation of global motion detectors, not by local motion detectors.

  • PDF

A Study on Technology Forecasting of Unmanned Aerial Vehicles (UAVs) Using TFDEA (TFDEA를 이용한 무인항공기 기술예측에 관한 연구)

  • Jung, Byungki;Kim, H.C.;Lee, Choonjoo
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.4
    • /
    • pp.799-821
    • /
    • 2016
  • Unmanned Aerial Vehicles (UAVs) are essential systems for Intelligence, Surveillance, and Reconnaissance (ISR) operations in current battlespace. And its importance will be getting extended because of complexity and uncertainty of battlespace. In this study, we forecast the advancement of 96 UAVs during the period of 32 years from 1982 to 2014 using TFDEA. TFDEA is a quantitative technology forecasting method which is characterized as non-parametric and non-statistical mathematical programming. Inman et al. (2006) showed that TFDEA is more accurate in forecasting compared with classical econometrics (e.g. regression). This study got 4.06% point of annual technological rate of change (RoC) for UAVs by applying TFDEA. And most UAVs in the period are inefficient according to the global SOA frontiers. That is because the countries which develop UAVs are in the middle class of technological level, so more than 60% of world UAVs markets are shared by North America and Europe which are advanced countries in terms of technological maturity level. This study could give some insights for UAVs development and its advancement. And also can be used for evaluating the adequacy of Required Operational Capability (ROC) of suggested future systems and managing the progress of Research and Development (R&D).

A Dynamic Analysis of the Women's Labor Market Transition: With a Focus on the Relationship between Productive and Reproductive Labor (여성의 생산노동과 재생산노동의 상호연관성이 취업에 미치는 영향에 관한 경험적 연구)

  • 이재열
    • Korea journal of population studies
    • /
    • v.19 no.1
    • /
    • pp.5-44
    • /
    • 1996
  • Wornen's lahor market participation as well as the policy concern for wider utilization of married women, have continuously grown up. However, research efforts on the determinants of women's labor market participation, in the context of the relationship hetween life courses and active entry into lahor market, has been far behind the growing interest in this field. This study has conducted an event histoiry analysis of women's labor market transition utilizing personal occupational history data collected by the Korea Institute for Women's Development in 1991. The analysis is divided into tow parts: First part introduces logit regression to analyze the determinants of women's labor market participation and exit. The second part employs Cox regression to see the variation of transition rate between employment and non-employment. The result shows that there is a wide variation in women's labor market participation according to age, cohort, and family formation. Special note is needed for the significantly negative effect of marriage and child birth on labor market participation. The transition pattern of lower class women with less education fits well to the prediction of neo-classical economics; but the tendency of highly educated women's regression to non-employment reveals the strong influence of the unfavorable labor market structure, which can be better explained by the neo-structuralist perspective. There is a strong trade-off between productive and reproductive labor of women, which can only be corrected by strong policy implementation, such as extended child care facilities, abolition of discriminatory employment practices, and expansion of flexible part-time employment.

  • PDF

Gene Co-expression Network Analysis Associated with Acupuncture Treatment of Rheumatoid Arthritis: An Animal Model

  • Ravn, Dea Louise;Mohammadnejad, Afsaneh;Sabaredzovic, Kemal;Li, Weilong;Lund, Jesper;Li, Shuxia;Svendsen, Anders Jorgen;Schwammle, Veit;Tan, Qihua
    • Journal of Acupuncture Research
    • /
    • v.37 no.2
    • /
    • pp.128-135
    • /
    • 2020
  • Background: Classical acupuncture is being used in the treatment of rheumatoid arthritis (RA). To explore the biological response to acupuncture, a network-based analysis was performed on gene expression data collected from an animal model of RA treated with acupuncture. Methods: Gene expression data were obtained from published microarray studies on blood samples from rats with collagen induced arthritis (CIA) and non-CIA rats, both treated with manual acupuncture. The weighted gene co-expression network analysis was performed to identify gene clusters expressed in association with acupuncture treatment time and RA status. Gene ontology and pathway analyses were applied for functional annotation and network visualization. Results: A cluster of 347 genes were identified that differentially downregulated expression in association with acupuncture treatment over time; specifically in rats with CIA with module-RA correlation at 1 hour after acupuncture (-0.27; p < 0.001) and at 34 days after acupuncture (-0.33; p < 0.001). Functional annotation showed highly significant enrichment of porphyrin-containing compound biosynthetic processes (p < 0.001). The network-based analysis also identified a module of 140 genes differentially expressed between CIA and non-CIA in rats (p < 0.001). This cluster of genes was enriched for antigen processing and presentation of exogenous peptide antigen (p < 0.001). Other functional gene clusters previously reported in earlier studies were also observed. Conclusion: The identified gene expression networks and their hub-genes could help with the understanding of mechanisms involved in the pathogenesis of RA, as well understanding the effects of acupuncture treatment of RA.