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1. 서 론

Classical continuum mechanics theories are widely used in 

various engineering applications. Through all-embracing experi-

ments, it has been found that many engineering materials, e.g. 

metals, composite, concrete, ceramics, polymers, etc., behave 

differently when they are of different sizes. Such mechanical 

behaviors by the size effect have been revealed by the micro- 

structure of the materials (Kolo, 2019). Classical elasticity theory 

troubles capturing the mechanical behavior of the size effect 

often observed at a micro-scale level because their assumption is 

obviously larger than micro-scale. Therefore, this leads to the 

development of gradient elasticity which possesses the internal 

length scale (Tenek and Aifantis, 2001; 2002). The internal 

length scale represents the information on the micro-structure of 

materials. However, its physical interpretation still remains with 

no consensus since it depends on material context.

To properly explain it, various studies have been proposed: 

strain gradient theory (Aifantis, 1992; Ru and Aifantis, 1993), 

gradient continua (Auffray et al., 2015), modified couple stress 

theory (Mindlin, 1964; Toupin, 1962) and non-local elasticity 

theory (Eringen, 1983; Pisano et al., 2009). These methods have 

one or more additional constants. Hence, one of the simplest 

theories including one additional constant to explain the size 

effect of micro-structures is introduced by Aifantis (1992). Although, 

in his study, stress concentration was quite removed at the tip of 

the crack and at the lines of dislocations/disclinations, the treat-

ment of high-order derivatives of gradients in the governing 

equations was still needed. This is because the higher order 

derivatives are required   continuous approximation space 
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within the finite element framework. Later, Ru and Aifantis 

(1993) introduced the theorem to avoid continuity. In their 

approach, the fourth-order differential equations are parted into 

two parts of second-order differential equations. A staggered 

approach successfully handled boundary value problems of 

gradient elasticity in the framework of the finite element method 

(FEM) (Askes et al., 2008).

In this study, instead of FEM, we employ the smoothed finite 

element method (S-FEM) in the staggered approach for gradient 

elasticity. The smoothed finite element framework were intro-

duced to improve the quality of the finite element solution 

obtained when using simplex elements, in particular, on triangles, 

the S-FEM variants such as the node-based S-FEM (NS-FEM) 

and edge-based S-FEM (ES-FEM) in 2D and NS-FEM and 

face-based S-FEM (FS-FEM) in 3D have shown to yield more 

accurate results than the traditional FEM. While cell-based 

S-FEM (CS-FEM) theoretically is similar to the traditional FEM 

and so does not relatively improve the solution over the triangular 

elements. These merits do come at a cost. The bandwidth of the 

the bilinear form computed using the ES-FEM/NS-FEM/FS- 

FEM is larger than the traditional FEM, which in turn increases 

the storage. However, there is a tradeoff between the desired 

accuracy and computational cost.

Since Liu et al. (2007a) introduced S-FEM, it has shown its 

toleration to shear/volumetric locking and heavily distorted 

meshes (Francis et al., 2022; Jiang et al., 2015; Lee et al., 2017). 

In addition, S-FEM has solved various engineering problems, in 

particular, discontinuity (Kshirsagar et al., 2021; Lee et al., 

2023a; Surendran et al., 2021). Besides such aspects, S-FEM in 

general shows fast convergence and yields high accuracy than 

those of FEM in classical linear elasticity (Bordas and Natarajan, 

2010; Liu et al., 2007b). Hence, S-FEM is suitable as a possible 

candidate for gradient elasticity to draw the size effect for 

micro-structures. Amongst different strain smoothing schemes, 

cell-based and edge-based strain smoothing methods are con-

sidered in this study.

This paper is organized as follows: the fundamental back-

ground of the stress-based gradient elasticity in the framework 

of finite element approximation is briefly introduced in Section 

2 and the overview of smoothed finite element method is revisited 

in Section 3. Systematic numerical studies are conducted to 

draw the effect of the internal length scales on gradient elasticity 

in the context of the proposed S-FEM. Lastly, overall remarkable 

conclusions are discussed in the last section.

2. Theoretical Background of Gradient Elasticity

In this section, the governing equation and the discretized 

weak form of stress-based gradient elasticity are briefly discussed. 

Aifantis and his co-workers (Aifantis, 2003; Altan and Aifantis, 

1997) suggested the following simple strong form of gradient 

elasticity:

    
∇ (1)

where  is the Cauchy stress, the infinitesimal strain is represented 

by  



∇ ∇  ,   is the elastic modulus,  is a material 

length parameter/internal length scale which relates to micro- 

structural characteristics and  is the displacement field. The 

equilibrium equations for a homogeneous body in the absence of 

inertia and body force is given by: ∇  . Then the fourth- 

order system of equation is derived as:




∇ ∇ 

∇∇ ∇ (2)

Note that to solve Eq. (2) numerical technique needs   

continuous shape functions. However, by virtue of Ru-Aifiantis 

theorem, Eq. (2) can be rewritten in such   continuous shape 

functions are required. The corresponding weak form is:




 



 (3)

where  is the trial function,  is the test function and   is the 

traction. By substituting Eq. (1) to Eq. (3), we can obtain:




 
∇ 




 (4)

Then, we can derive Eq. (4) by applying integration by part on 

the higher-order term to get the following equation:







∇
∇ 





 






(5)

Note that in a   continuous formulation, it is typical to 

assume that this higher-order boundary condition vanishes at the 

boundary (Askes and Aifantis, 2002). However, in this study, 
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due to the use of operator split, the higher-order boundary 

condition also vanishes as a result of the chosen boundary 

conditions. Then, Eq. (5) leads to    (the system of linear 

equations), where:

∑
 ∑









 




∇


∇

 (6a)

 ∑
 ∑




 (6b)

where   is the strain-displacement matrix. In the current approach, 

the strain-displacement matrix   is built over smoothing domains, 

while traditionally it is computed on elements. The detailed 

computation of the   matrix will be discussed in Section 3.

To solve Eq. (6), Ru and Aifantis (1993) introduced the 

operator split approach. In the context of finite element im-

plementation, this approach includes two steps: computation of 

local displacements and computation of non-local stress fields. 

Firstly, the computation of local displacement fields is the same 

as classical elasticity as follows:

  









   (7)

Once, the local displacement field is obtained, the non-local 

stress is calculated as:

 
∇   (8)

where the non-local stress  is a nodal unknown field and   is 

the linear differential operator given as in 2D:

 




























(9)

The weak form of Eq. (8) can be given by:




 ∇
∇ 



 (10)

where  ∑




 with a set of shape functions  as given in 

Eq. (11) and the nodal non-local stress 


. 

 













  

 
 

  


       (11)

where  is the number of nodes of the element. Finally, Eq. (10) 

can be rewritten using Eq. (1) and the non-local stress definition 

as follows:




























 




 (12)

where a summation  ̂  . In this paper, we utilise the 

smoothed finite element method, which will be discussed in 

Section 3, to solve the local displacement field and use the finite 

element method to get the non-local stress. Interested readers 

can refer to Bagni and Askes (2015) and Lee et al. (2023b) and 

references therein for further details.

3. Smoothed finite element method: overview

In this section, the basic idea behind the gradient smoothing 

approach in the framework of the finite element method is 

briefly revisited. Liu et al. (2007a) introduced the gradient 

smoothing approach in the framework of the finite element 

method, often called smoothed finite element method (S-FEM) 

to improve linear triangular and bilinear quadrilateral elements. 

The one of remarkable aspects of S-FEM is the sub-division of 

finite elements, so-called sub-cells. Then, sub-cells are recon-

structed to smoothing domains by different schemes where 

gradients are smoothed over the smoothing domains. Hence, 

strains are continuous over the smoothing domains but are 

discontinuous across the boundaries of smoothing domains, not 

elements (Liu and Nguyen, 2016). 

Fig. 1 illustrates two main schemes of S-FEM that how to 

construct the smoothing domains: cell-based and edge-based 

S-FEM. Fig. 1(a) explains the concept of cell-based S-FEM 

(CS-FEM) and Fig. 1(b) is about edge-based S-FEM (ES-FEM), 

respectively. As shown in Fig. 1, each 3-node triangular element 

is split into three triangular sub-cells. Then, in the cell-based 

scheme, for example, ∆ is divided into three sub-cells: 

∆, ∆ and ∆. In CS-FEM, each sub-cell 

becomes the smoothing domain where strains will be smoothed. 

ES-FEM also needs to split triangular elements into three 

triangular sub-cells. However, the smoothing domain is built by 
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the position of the target edge. For instance, as shown in Fig. 

1(b), when the target edge  that the sharing boundary of ∆ 

and ∆ is chosen, the smoothing domain is combined by a 

sub-cell ∆ of ∆ and a sub-cell ∆ of ∆. Note 

that, when the target edge is the boundary of the domain, only 

one sub-cell is used as the smoothing domain in ES-FEM since 

the edge does not have a neighboring finite element.

In S-FEM approximation, the following infinitesimal strain 

 ̃  over the smoothing domain  is considered:

 ̃  


  ∀∈ (13)

where a point  is located on the boundaries of the smoothing 

domain and the weight function  is given in Eqs. (14a) and 

(14b):




      (14a)

   ∈

  ∉ 

(14b)

Hence, Eq. (13) can be rewritten by means of the divergence 

theorem as follows:

 ̃
 


 


 


 


  (15)

where  is the area of the smoothing domain and   is the 

outward normal vector given at Gauss points located on the 

middle point of boundaries of the smoothing domain as shown in 

Fig. 1. In terms of the nodal displacements, Eq. (15) is rewritten as:

 ̃ ∑
∈







 (16)

where  is a set of nodes. The 2D smoothed strain-displace-

ment matrix from Eq. (16) is defined as follows:


 













 

 








(17)

where


 


 




  (18)

 











 

 

 

(19)

where 

 is the shape functions and  is the boundaries of the 

smoothing domain and Eq. (19) denotes the 2D matrix form of 

the outward normal vectors. Since the 2D matrix form of the 

outward normal vectors is equivalent to the differential operator 

(Eq. (9)), Eq. (17) can be utilized for the computation of the 

stiffness matrix in the same manner as in FEM. As shown in Fig. 

1 and Eq. (18), the proposed S-FEM does not require an explicit 

form of shape functions. In other words, there is no isopara-

metric mapping. In addition, the interior Gauss integration is 

altered to line integration with one Gauss point at the middle of 

boundaries of the smoothing domain (please refer to Fig. 1). 

These salient features of S-FEM bring marked benefits that it 

can avoid over-estimation of the stiffness and is immune to 

highly distorted meshes.

The discrete system equations for S-FEM is given by:

  



 







 ∑  
 










∑  







(20)

where  is the number of target cells/edges for each scheme. The 

(a) cell-based scheme

(b) edge-based scheme

Fig. 1  Construction of smoothing domains for each cell-based and 

edge-based scheme
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external force vector  is obtained in the same manner in finite 

element approximation. In the present approximation, Eq. (7) is 

replaced by Eq. (20) for the local displacement fields. Eq. (12) is 

applied to each finite element in the current framework to obtain 

the non-local stress field. 

4. Numerical tests

This section presents a series of two-dimensional tests with 

the proposed CS-FEM and ES-FEM. Fig. 2 illustrates the main 

process of the present framework. After generating triangular 

finite meshes, the smoothed stiffness matrix is constructed on 

either cell-based smoothing domains or edge-based smoothing 

domains. The non-local stress field is then calculated 

element-wise using Eq. (12). 

A cantilever beam subject to end shear is validated to show 

the accuracy of the proposed S-FEM, compared to the analytical 

solution. Then, to capture the size effect at the dislocation lines 

and crack tip, a plate with a U-notched hole under far-field 

tension and a plate with a crack are examined. For all examples, 

3-node triangular finite element meshes are used. To discuss the 

results, we use the following conventions:

∙ CS-FEM: cell-based smoothed finite element method

∙ ES-FEM: edge-based smoothed finite element method

∙ T3: 3-node triangular element

∙ DOFs: degrees of freedom

To examine tests, the proposed framework has been coded in 

MATLAB 2023b and the implementation was conducted on an 

Apple M2 chip with a clock speed of 3.49 GHz and 16 GB of 

memory.

4.1 Cantilever beam 

This section tests a cantilever beam as the validation for the 

proposed smoothed FEM. Fig. 3 depicts the geometry of the 

beam and boundary conditions. The length of the beam is ∈ 

m and the height is given as ∈ m. The boundary con-

ditions are imposed on the left end of the beam and the load 

   N carries on the right side of the beam. Young’s modulus 

and Poisson’s ratio are    N/m2 and   , respec-

tively. Note that the internal length scale is   . The exact 

displacements and stresses can be found in Augarde and Deeks 

(2008):  



, 

 ,  


 




  , 





 


    






 and  





  





 . For this test, the following 

9 levels of refined T3 elements are used: 306, 650, 1122, 1722, 

2450, 3306, 4290, 5402 and 6642 DOFs. Fig. 4 shows the con-

vergence of displacements and stresses for FEM, CS-FEM and 

ES-FEM. As expected, CS-FEM provides marginally better results 

in displacements and stresses to FEM; while ES-FEM yields 

more accurate results than other approaches.

4.2 Plate with a U-notched hole 

Next, the infinite plate with a U-notched hole with the lateral 

extension is considered. As shown in Fig. 5, the length and 

height of the plate are    m with the height of notch    

m and the radius of the hole is    m, respectively. Lateral 

tension 
  N/m2 is implemented on the right edge of the 

Fig. 2  Schematic steps for the computation of displacements and 

non-local stress Fig. 3  Geometry and boundary conditions of a cantilever beam
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plate. The same material properties used in Section 4.1 are also 

used for this test. 

It is known that the infinite plate with a hole shows the stress 

concentration at the top of the hole because of a geometric 

discontinuity. Hence to quantify the effect of the stress con-

centration by the internal length scale, we measure the stress 

concentration factor  given as (Pilkey and Pilkey, 2008):

 








 











where for  ≤  ≤ , 
   

, 
 ,    

 and    . 

  is obtained at the top of the notch where    . 

Therefore, the stress concentration factor of the plate is 

  . 

Fig. 6 shows the convergence of the stress concentration 

factors with respect to the length of the plate and the internal 

length scales,   . As shown 

in Fig. 6, ES-FEM gives a more accurate  than CS-FEM. 

Furthermore,  of both methods is decreased when the internal 

length scales are close to 1.0.

Fig. 7 illustrates stress   distribution with the different 

length scales,    and   . Figs. 7(a) and 7(b) show the 

stress distribution when   , i.e. the classical elasticity. 

Figs. 7(c) and 7(d) show the distribution of stress for CS-FEM 

and ES-FEM when   . It can be found that when the 

internal length scale is increased, the stress concentration is 

vanished and the values of stress are dramatically decreased.

(a) relative errors in displacement

(b) relative errors in stress

Fig. 4  Cantilever beam: convergence of the relative errors in 

displacements and stresses for FEM and S-FEM

Fig. 5  Geometry and boundary conditions of an infinite plate with 

U-notched hole

Fig. 6  Convergence of the stress concentration factor   with 

respect to the internal length scale 
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4.3 Plate with a crack 

Lastly, to verify the relaxation of stress concentration in 

stress-based gradient elasticity, we consider a plate with a crack, 

as shown in Fig. 8. The plate is a rectangular shape with dimen-

sions of    mm and the bottom edge is fully constrained. The 

crack implies as    mm at    mm. Two different material 

properties are assigned to two regions: (a) the left half ( 

 ∼  mm) has Young’s modulus    GPa and Poisson’s 

ratio    and (b) the right half (   ∼  mm) has Young’s 

modulus 
  GPa and Poisson’s ratio 

 , respectively. 

For this study, 8 different levels of the internal length scales are 

evaluated:   . Both CS- 

FEM and ES-FEM simulations use 25600 elements (26130 DOFs).

Fig. 9 presents the stress distributions obtained using CS- 

FEM and ES-FEM for different internal length scales (51,842 

degrees of freedom). As expected, the stress is highly concen-

trated at the crack tip and the bi-material interface. However, 

with increasing internal length scale, the stress becomes more 

evenly distributed throughout the domain, demonstrating the 

smoothing effect of the internal length scale in the proposed 

gradient elasticity.

Fig. 10 depicts the stress concentration reduction along the 

midlines of the plate (   mm) for CS-FEM and ES-FEM. 

As expected, high stress concentrations are initially observed at 

the crack tip and the material interface, as shown in Fig. 10. 

However, the effect of the internal length scale becomes evident 

as the stress concentration alleviates. Notably, when the internal 

length scale approaches   , the stress distribution becomes 

finite, indicating a complete absence of sharp stress gradient.

(a) CS-FEM ( ) (b) ES-FEM ( )

(c) CS-FEM ( ) (d) ES-FEM ( )

Fig. 7  Stress   distribution for a plate with a U-notched hole for 

  and  

Fig. 8  Geometry and boundary conditions of a plate with a crack

(a) CS-FEM ( ) (b) ES-FEM ( )

(c) CS-FEM ( ) (d) ES-FEM ( )

Fig. 9  Stress σ  distribution at the crack tip and the interface of 

materials for   and  
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5. Conclusions

This paper introduces CS-FEM and ES-FEM for two- 

dimensional stress-based gradient elasticity. The effectiveness 

of the proposed framework is demonstrated through various 

standard problems, consistently yielding accurate results. The 

influence of the internal length scale on stress concentration is 

investigated. The versatility of the framework is showcased by 

its applicability to problems with both smoothed and singular 

solutions. In particular, a single crack problem with bi-material 

properties is analyzed. Here, the internal length scale effectively 

mitigates the singularity typically observed at the crack tip and 

material interface. The proposed methods offer several advantages:

∙ avoids the need for explicit shape functions, thus, 

simplifying implementation;

∙ staggered scheme suits local displacement and non-local 

stress field computations, enhancing computational efficiency;

∙ implementation requires any further human intervention 

into the existing FEM code for gradient elasticity frame-

work.

However, the proposed approach generally yields a higher 

computational cost than the standard FEM when employing the 

same number of DOFs. This increased cost derives from the 

subdivision of each finite element into sub-domains, which are 

utilized to construct smoothing domains. Consequently, the 

proposed S-FEM exhibits a wider stiffness bandwidth than 

FEM.

In future work, the application of gradient elasticity to 

functionally graded materials within the context of stress- 

constrained structural topology optimization will be explored.
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요  지

본 논문에서는 평활화 유한요소법(Smoothed finite element method)을 도입한 응력 기반 구배 탄성론(Gradient elasticity)의 2차원 경

계치 문제에 대한 연구를 수행하였다. 구배 탄성론은 기존 탄성론에서는 표현할 수 없는 미소규모의 크기 의존적인 기계적 거동을 설

명하기 위해 제안되었다. 구배 탄성체론에서 고차 미분 방정식을 두 개의 2차 미분 방정식으로 분할하는 Ru-Aifantis 이론을 사용하기 

때문에 평활화 유한요소법에 적용이 가능하게 된다. 본 연구에서 경계치 문제를 해결하기 위해 평활화 유한 요소 프레임워크에 스태

거드 방식(Staggered scheme)을 사용하여 국부 변위장과 비국부 응력장을 평활화 영역 및 요소에서 각각 계산하였다. 구배 탄성에서 

중요한 변수인 내부 길이 척도의 영향을 측정하기 위해 일련의 수치 예제를 수행하였다. 수치 해석 결과는 제안한 기법이 내부 길이 

척도에 따라 균열 선단과 전위 선에 나타나는 응력 집중을 완화할 수 있음을 보여준다.

핵심용어 : 평활화 유한요소법, 구배 탄성체, 응력 집중, 내부 길이 척도


