DOI QR코드

DOI QR Code

A Stress-Based Gradient Elasticity in the Smoothed Finite Element Framework

평활화 유한요소법을 도입한 응력기반 구배 탄성론

  • Changkye Lee (Division of Cardiovascular Medicine, University of Miami) ;
  • Sundararajan Natarajan (Department of Mechanical Engineering, Indian Institute of Technology Madras)
  • 이창계 (미국 마이애미대학교 의과대학 ) ;
  • Received : 2024.05.08
  • Accepted : 2024.06.05
  • Published : 2024.06.30

Abstract

This paper presents two-dimensional boundary value problems of the stress-based gradient elasticity within the smoothed finite element method (S-FEM) framework. Gradient elasticity is introduced to address the limitations of classical elasticity, particularly its struggle to capture size-dependent mechanical behavior at the micro/nano scale. The Ru-Aifantis theorem is employed to overcome the challenges of high-order differential equations in gradient elasticity. This theorem effectively splits the original equation into two solvable second-order differential equations, enabling its incorporation into the S-FEM framework. The present method utilizes a staggered scheme to solve the boundary value problems. This approach efficiently separates the calculation of the local displacement field (obtained over each smoothing domain) from the non-local stress field (computed element-wise). A series of numerical tests are conducted to investigate the influence of the internal length scale, a key parameter in gradient elasticity. The results demonstrate the effectiveness of the proposed approach in smoothing stress concentrations typically observed at crack tips and dislocation lines.

본 논문에서는 평활화 유한요소법(Smoothed finite element method)을 도입한 응력 기반 구배 탄성론(Gradient elasticity)의 2차원 경계치 문제에 대한 연구를 수행하였다. 구배 탄성론은 기존 탄성론에서는 표현할 수 없는 미소규모의 크기 의존적인 기계적 거동을 설명하기 위해 제안되었다. 구배 탄성체론에서 고차 미분 방정식을 두 개의 2차 미분 방정식으로 분할하는 Ru-Aifantis 이론을 사용하기 때문에 평활화 유한요소법에 적용이 가능하게 된다. 본 연구에서 경계치 문제를 해결하기 위해 평활화 유한 요소 프레임워크에 스태거드 방식(Staggered scheme)을 사용하여 국부 변위장과 비국부 응력장을 평활화 영역 및 요소에서 각각 계산하였다. 구배 탄성에서 중요한 변수인 내부 길이 척도의 영향을 측정하기 위해 일련의 수치 예제를 수행하였다. 수치 해석 결과는 제안한 기법이 내부 길이 척도에 따라 균열 선단과 전위 선에 나타나는 응력 집중을 완화할 수 있음을 보여준다.

Keywords

References

  1. Aifantis, E.C. (1992) On the Role of Gradients in the Localization of Deformation and Fracture, Int. J. Eng. Sci., 30, pp.1279~1299.
  2. Aifantis, E.C. (2003) Update on a Class of Gradient Theories, Mech. Mater., 35, pp.259~280.
  3. Altan, B.S., Aifantis, E.C. (1997) On Some Aspects in the Special Theory of Gradient Elasticity, J. Mech. Behav. Mater., 8, pp.231~282.
  4. Askes, H., Aifantis, E.C. (2002) Numerical Modeling of Size Effects with Gradient Elasticity - Formulation, Meshless Discretization with Examples, Int. J. Fract., 117, pp.347~358.
  5. Askes, H., Morata, I., Aifantis, E.C. (2008) Finite Element Analysis with Staggered Gradient Elasticity, Comput. & Struct., 86, pp.1266~1279.
  6. Auffray, N., dell'Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G. (2015) Analytical Continuum Mechanics àla Hamilton-Piola: Least Action Principle for Second Gradient Continua and Capillary Fluids, Math. & Mech. Solids, 20, pp.375~417.
  7. Augarde, C.E., Deeks, A.J. (2008) The Use of Timoshenko's Exact Solution for a Cantilever Beam in Adaptive Analysis, Finite Elem. Anal. & Des., 44, pp.595~601.
  8. Bagni, C., Askes, H. (2015) Unified Finite Element Methodology for Gradient Elasticity, Comput. & Struct., 160, pp.100~110.
  9. Bordas, S.P.A., Natarajan, S. (2010) On the Approximation in the Smoothed Finite Element Method (SFEM), Int. J. Numer. Methods Eng., 81, pp.660~670.
  10. Eringen, A.C. (1983) On Differential Equations of Nonlocal Easticity and Solutions of Screw Dislocation and Surface Waves, J. Appl. Phys., 54, pp.4703~4710.
  11. Francis, A., Natarajan, S., Lee, C.K., Budarapu, P.R. (2022) A Cell-based Smoothed Finite Element Method for Finite Elasticity, Int. J. Comput. Methods Eng. Sci. & Mech., 23, pp.536~550.
  12. Jiang, C., Liu, G.R., Han, X, Zhang, Z.-Q., Zeng, W. (2015) A Smoothed Finite Element Method for Analysis of Anisotropic Large Deformation of Passive Rabbit Ventricles in Diastole, International Journal for Numerical Methods in Biomedical Engineering, 31, pp.e02697.
  13. Kolo, I. (2019) Computational Gradient Elasticity and Gradient Plasticity with Adaptive Splines, PhD Thesis, University of Sheffield.
  14. Kshirsagar, S., Lee, C.K., Natarajan, S. (2021) -Finite Element Method for Frictionless and Frictional Contact Including Large Deformation, Int. J. Comput. Methods, 18, pp.215002.
  15. Lee, C.K., Angela Mihai, L., Hale, J.S., Kerfriden, P., Bordas, S.P.A. (2017) Strain Smoothing for Compressible and Nearly-Incompressible Finite Elasticity, Comput. & Struct., 182, pp.540~555.
  16. Lee, C.K., Natarajan, S., Yee, J.-J. (2023a) Quasi-brittle and Brittle Fracture Simulation Using Phase-field Method based on Cell-based Smoothed Finite Element Method, J. Comput. Struct. Eng. Inst. Korea, 36, pp.295~305.
  17. Lee, C.K., Singh, I.V., Natarajan, S. (2023b) A Cell-based Smoothed Finite-Element Method for Gradient Elasticity, Eng. Comput., 39, pp.925~942.
  18. Liu, G.R., Dai, K.Y., Nguyen, T.T. (2007a) A Smoothed Finite Element Method for Mechanics Problems, Comput. Mech., 39, pp.859~877.
  19. Liu, G.R., Nguyen, T.T. (2016) Smoothed Finite Element Methods, CRC Press, Boca Raton.
  20. Liu, G.R., Nguyen, T.T., Dai, K.Y., Lam, K.Y. (2007b) Theoretical Aspects of the Smoothed Finite Element Method (SFEM), Int. J. Numer. Methods Eng., 71, pp.902~930.
  21. Mindlin, R.D. (1964) Micro-Structure in Linear Elasticity, Archive for Rational Mechanics and Analysis, 16, pp.51~78.
  22. Pilkey, W.D., Pilkey, D.F. (2008) Peterson's Stress Concentration Factors, Wiley, New York.
  23. Pisano, A.A., Sofi, A., Fuschi, P. (2009) Nonlocal Integral Elasticity: 2D Finite Element Based Solution, Int. J. Solids & Struct., 46, pp.3836~3849.
  24. Ru, C.Q., Aifantis, E.C. (1993) A Simple Approach to Solve Boundary-Value Problem in Gradient Elasticity, Acta Mech., 101, pp.59~68.
  25. Surendran, M., Lee, C.K., Nguyen-Xuan, H., Liu, G.R., Natarajan, S. (2021) Cell-based Smoothed Finite Element Method for Modelling Interfacial Cracks with Non-Matching Grids, Eng. Fract. Mech., 242, p.107476.
  26. Tenek, L.T., Aifantis, E.C. (2001) On Some Applications of Gradient Elasticity to Composite Materials, Compos. Struct., 53, pp.189~197.
  27. Tenek, L.T., Aifantis, E.C. (2002) A Two-dimensional Finite Element Implementation of a Special Form of Gradient Elasticity, Comput. Model. Eng. & Sci., 3, pp.731~741.
  28. Toupin, R.A. (1962) Elastic Materials with Couple-Stresses, Arch. Ration. Mech. & Anal., 11, pp.385~414.