• Title/Summary/Keyword: noise exposure

Search Result 514, Processing Time 0.028 seconds

Noise Exposure Assessment at Military Rifle Ranges in South Korea (우리나라 군대 소총사격 훈련장에서의 소음노출평가)

  • Hwang, Sung Ho;Park, Jae Bum
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.261-265
    • /
    • 2013
  • The purpose of this study was to evaluate noise level exposures at different locations such as the left and right ears of the shooter, control room, waiting soldier location and drill ground. For this study, we visited two military rifle ranges and took measurements with a sound level meter (3M Quest SoundPro TM) at five different locations with values of Peak (dB(A)) and Max (dB(A)). The highest peak value of impulse noise level averaged 150.4 dB(A), ranging from 149.6 to 150.5 dB(A) at both the left and right ear sides. This result was significantly different between both left and right ear side locations and at other locations such as the control room, waiting soldier location, and drill ground (P < 0.001). Frequency of impulse noise exposure level showed that the left ear of shooter had the highest frequency (20 times) at over 150 dB(A). This study confirmed that there is a need for proper controls to reduce the amount of impulse noise exposure at military rifle ranges.

A Study on the Cabin's Noise Levels of Cargo-Passenger Ships plies South-West Coast line (서남 연근해 운항 정기화객선의 선내 소음에 관한 연구)

  • Yu, Young-Hun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.05a
    • /
    • pp.207-212
    • /
    • 2006
  • The noise levels on board ship recognized at Europe in the early 1970s and the noise regulations on board ship began to put in a statutory form. After that, in 1982 "International Code on Noise Levels on Board Ships" adopted by IMO and it became standard to the newly built ship and remain so to this day. Especially, the ship engine room, which have huge main engine and various kinds of subsidiary machines, is under an extremely loud condition and so the worker who works in it is easy to lose his hearing. Recently, each nation regulates the allowable noise exposure time by law to protect the industrial employee from the occupational hardness of hearing. In our country, the allowable noise exposure time is regulated by the labor standard law but the international provisions regulated by IMO have been applied in case of the ship engine room. In this paper, the cabin's noise levels of cargo-passenger ships plies south-west coast line were investigated.

  • PDF

Differences in Temporary Threshold Shift and Recovery Patterns Depending on Sound Type and Pressure (소리의 종류와 크기에 따른 일과성 청력 역치 상승과 회복의 차이)

  • Lee, Chae Kwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.4
    • /
    • pp.387-393
    • /
    • 2020
  • Objective: This study aimed to investigate the differences in temporary threshold shift (TTS) and recovery patterns according to different types of sound and volume. Methods: TTS and recovery patterns were assessed for eight students after 30-minute exposure to both 70.0 dB and 90.0 dB of factory noise (noise) as well as music. TTS was measured before exposure and two minutes post exposure, and recovery patterns were evaluated every 10 minutes for one hour. The subjects performed activities of daily life and sleeping times as usual but taking drugs or drinking alcohol were prohibited. The experiment was repeated three times with an interval of at least 16 hours. ANOVA and T-test were carried out using SPSS 19.0 for Windows. Results: The hearing threshold of all subjects before exposure was less than 30 dB at all frequencies. Mean TTSs of 70 dB noise and 90 dB noise exposure were 0.14 and 4.48 dB (p<0.001). Meanwhile, the difference in music was insignificant (-0.63 dB and 0.55 dB, p=0.063). A significance in the difference was also found between the mean TTS of music and noise exposure, more obviously at 90.0 dB (p<0.001) than at 70 dB (p=0.232). The TTS differences were found frequency-wise in terms of sound type. Mean TTS by frequency was higher at 4,000 and 6,000 Hz than at other frequencies, and higher in noise than music at the same sound pressure. The TTS difference in each frequency between both sound types was significant at 90 dB (p<0.001). Subjects mostly recovered from TTS in one hour after exposure, but not with 90 dB-noise exposure. Conclusion: TTS and recovery patterns were different depending on the sound type. When exposed to factory noise, TTS was greater and recovery time was longer compared to music at the same sound pressure. These results suggested that the difference in cognitive processes and psychological factors according to the type of sound causes a change in TTS and recovery.

Road Traffic Noise Simulation for Small-scale Urban Form Alteration Using Spatial Statistical Model (공간통계모형을 이용한 소규모 도시 형태 변경에 따른 소음도 예측)

  • Ryu, Hunjae;Chun, Bum Seok;Park, In Kwon;Chang, Seo Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.4
    • /
    • pp.284-290
    • /
    • 2015
  • Road traffic noise is closely related with urban forms and urban components, such as population, building, traffic and land-use, etc. Hence, it is possible to minimize the noise exposure problem depending on how to plan new town or urban planning alteration. This paper provides ways to apply for urban planning in consideration of noise exposure through road traffic noise estimation for alteration of small-scale urban form. Spatial autoregressive model from the former study is used as statistical model for noise simulation. The simulation results by the spatial statistical model are compared with those by the engineering program-based modeling for 5 scenarios of small-scale urban form alteration. The error from the limitation of containing informations inside the grid cell and the difficulties of reflecting acoustic phenomena exists. Nevertheless, in the stage of preliminary design, the use of the statistical models that have been estimated well could be useful in time and economically.

The Research of Railway Noise through Auditory Experiments Focused on the Autonomic Nervous System and Cardiovascular System (청감실험을 통한 철도소음의 자율신경 및 심혈관계통 영향도 연구)

  • Lee, Jae Kwan;Yoon, Eun Sun;Jang, Chae Mi;Jae, Sae Young;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.674-679
    • /
    • 2016
  • According to the conventional studies on the noise and cardiovascular effect, railway noise is better associated with hypertension and adverse cardiovascular events than road traffic noise. But the underlying mechanisms remain unclear. We investigated the hypothesis that exposure to acute railway noise would the unfavorable effect of cardiovascular and autonomic system in healthy young subjects. Using a randomized, sham-controlled cross-over design, ten subjects were assigned to receive either an exposure to high speed train noise (84 dB) for 30 minutes or a control condition (non noise), separated by two days. Blood pressure, heart rate, augmentation index and heart rate variability as indices of cardiovascular and autonomic system function were measured at baseline, during, and recovery from two trials. The results show that exposure to acute railway noise significantly increased diastolic blood pressure and augmentation index, which may cause of adverse cardiovascular effects.

Changes in Cerebral Hemodynamics and Sympathetic System During a Combination of Subway Noise with Mental Activity

  • Park, Jae-Hyun;Hyun, Kyung-Yae;Choi, Seok-Cheol
    • Biomedical Science Letters
    • /
    • v.13 no.3
    • /
    • pp.231-237
    • /
    • 2007
  • Subway environments such as crowd, passenger's gab, or subway-generated mechanical noise may become a potential stressor. The present study was sought to determine whether subway noise with or without mental activity affects cerebral hemodynamics and sympathetic system. Fifty-four healthy volunteers were divided group I which underwent subway noise (n=24) and group II which underwent a combined mental activity (mental arithmetic) with subway noise (n=30). Sympathetic factors such as heart rate (HR), blood pressure (BP) and heart rate-systolic pressure product (RPP), and mean blood flow velocity in the middle cerebral artery (MCAV) were measured before (baseline), during and after the noise-exposure. Systolic and diastolic blood pressure, HR and RPP significantly increased in group II (P<0.05) but not in group I during the noise-exposure. Peak-MCAV, diastolic-MCAV and mean-MCAV in the both groups were elevated during the noise-exposure (P<0.05) and the increased ratios in group II were greater than those in group I. These results suggest that a combined mental activity with subway noise may be a stressor which affects cerebral hemodynamics and sympathetic system.

  • PDF

Research on the characteristics of noise exposure on worker wearing acoustic devices (음향도구 착용 근로자의 소음노출 실태에 관한 연구)

  • Kim, Kab-Bae;Yoo, Kye-Mook;Lee, In-Seop;Chung, Kwang-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.808-813
    • /
    • 2011
  • There are hundreds of thousands call center workers wearing acoustic device. However, researches and noise exposure measurements on the noise transmitted from acoustic devices have seldom been performed due to the difficulty of measurement and to the absence of the measuring method in Korea. The aim of this study is to set up management measures to protect hearing loss on the call operator by acquiring measurement data of noise transmitted from the headset Noise exposure measurements of 17 operators were performed in 7 call centers and Head and Torso Simulator method in compliance with the ISO Standard 11904-2 was used for the measurement of noise transmitted from the headset Sound pressure levels(SPL) transmitted from the headset were 73.2~86 dB(A). The operator exposed to the highest SPL set up his volume control at 9 which was the highest volume level. The volume control level, adjustable from 1 to 9, could be identified 12 out of 17 operators and the range of volume levels was 4.5~9. As a result of Pearson Correlation Analysis, the correlation between volume level and SPL transmitted from the headset showed high relation as significance at the 0.672 level(p<0.05). To protect hearing loss of call center operators, it is more practical and effective measure to limit the volume level below the noise exposure level, i.e. 85 dB(A), rather than to carry out noise monitoring considering cost-effective aspect.

  • PDF

Research on the Characteristics and Measures of Noise Exposure on Worker Wearing Acoustic Devices (음향도구 착용 근로자의 소음노출 실태에 관한 연구)

  • Kim, Kab-Bae;Yoo, Kye-Mook;Lee, In-Seop;Chung, Kwang-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.7
    • /
    • pp.615-621
    • /
    • 2011
  • There are hundreds of thousands call center workers wearing acoustic device. However, researches and noise exposure measurements on the noise transmitted from acoustic devices have seldom been performed due to the difficulty of measurement and to the absence of the measuring method in Korea. The aim of this study is to set up management measures to protect hearing loss on the call operator by acquiring measurement data of noise transmitted from the headset. Noise exposure measurements of 17 operators were performed in 7 call centers and head and Torso simulator method in compliance with the ISO standard 11904-2 was used for the measurement of noise transmitted from the headset. Sound pressure levels(SPL) transmitted from the headset were 73.2~86 dB(A). The operator exposed to the highest SPL set up his volume control at 9 which was the highest volume level. The volume control level, adjustable from 1 to 9, could be identified 12 out of 17 operators and the range of volume levels was 4.5~9. As a result of pearson correlation analysis, the correlation between volume level and SPL transmitted from the headset showed high relation as significance at the 0.672 level(p<0.05). To protect hearing loss of call center operators, it is more practical and effective measure to limit the volume level below the noise exposure level, i.e. 85 dB(A), rather than to carry out noise monitoring considering cost-effective aspect.

Study on Dual-Energy Signal and Noise of Double-Exposure X-Ray Imaging for High Conspicuity

  • Song, Boram;Kim, Changsoo;Kim, Junwoo
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.160-169
    • /
    • 2021
  • Background: Dual-energy X-ray images (DEI) can distinguish or improve materials of interest in a two-dimensional radiographic image, by combining two images obtained from separate low and high energies. The concepts of DEI performance describing the performance of double-exposure DEI systems in the Fourier domain been previously introduced, however, the performance of double-exposure DEI itself in terms of various parameters, has not been reported. Materials and Methods: To investigate the DEI performance, signal-difference-to-noise ratio, modulation transfer function, noise power spectrum, and noise equivalent quanta were used. Low- and high-energy were 60 and 130 kVp with 0.01-0.09 mGy, respectively. The energy-separation filter material and its thicknesses were tin (Sn) and 0.0-1.0 mm, respectively. Noise-reduction (NR) filtering used the Gaussian-filter NR, median-filter NR, and anti-correlated NR. Results and Discussion: DEI performance was affected by Sn-filter thickness, weighting factor, and dose allocation. All NR filtering successfully reduced noise, when compared with the dual-energy (DE) images without any NR filtering. Conclusion: The results indicated the significance of investigating, and evaluating suitable DEI performance, for DE images in chest radiography applications. Additionally, all the NR filtering methods were effective at reducing noise in the resultant DE images.

investigation on Human Effects of Vibration and Noise Exposed on Human: I. Human Vibration (인체 진동소음의 인체영향에 대한 국내외 기술조사 : 인체 진동)

  • 정완섭;권휴상
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.691-694
    • /
    • 2001
  • The recent national contract (Ecotechnopia 21) supported by the ministry of environment puts much significance on new issues for the assessment of human effects arising from vibration and noise exposed to human. This paper focuses only on hand-arm vibration since it has been a major problem in protecting vibration exposure to human. To set up a systematic way of assessing adverse effects of hand-arm vibration, surveys were made on recent international standards and researches related to hand-arm vibration. The measurement and evaluation methods of hand-arm transmitted vibration, the relationship between vibration exposure and effects on health, and the assessment methods of nerve dysfunctions are addressed in this paper. Those methods are linked into a logical way of assessing effects of hand-arm vibration on human. Finally, the current activities and achievements in this work are briefly summarised.

  • PDF