• Title/Summary/Keyword: noise attenuation

Search Result 480, Processing Time 0.027 seconds

A study on the standard for determining airborne sound insulation performance of sound barrier panels (방음판의 음향투과손실 측정규격에 관한 연구)

  • Oh, Yang Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.302-311
    • /
    • 2022
  • Sound barrier walls are one of the most effective alternatives for reducing environmental noise on roads and railways in the city center. The insertion loss of the sound barrier against road traffic noise is the sum of the sound transmission loss, sound absorption loss, and sound energy reduction due to the diffraction attenuation of the sound barrier. The sound transmission loss of the sound barrier is one of the important factors that determine the insertion loss of the sound barrier and is a basic indicator that determines the performance of the sound barrier. Nevertheless, there is not a separate standard in Korea for measuring the acoustic transmission loss of sound barrier panels. There are only a few conditions in KS F 4770 series that stipulates on the general material of sound barrier panels. This thesis examines the necessity of the acoustic transmission loss measurement and evaluation standards of sound barrier walls, and seeks a measurement method in a free sound field (anechoic chamber) sound receiving room considering the characteristics of sound barrier walls installed in external spaces, unlike indoor building materials. In addition, a single number evaluation method using a reference spectrum was proposed so that the sound insulation effect according to various installation places such as roadside or railroad side can be easily displayed.

Usefulness Evaluation of Artifacts by Bone Cement of Percutaneous Vertebroplasty Performed Patients and CT Correction Method in Spine SPECT/CT Examinations (척추 뼈 SPECT/CT검사에서 경피적 척추성형술 시행 환자의 골 시멘트로 인한 인공물과 CT보정방법의 유용성 평가)

  • Kim, Ji-Hyeon;Park, Hoon-Hee;Lee, Juyoung;Nam-Kung, Sik;Son, Hyeon-Soo;Park, Sang-Ryoon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.1
    • /
    • pp.49-61
    • /
    • 2014
  • Purpose: With the aging of the population, the attack rate of osteoporotic vertebral compression fracture is in the increasing trend, and percutaneous vertebroplasty (PVP) is the most commonly performed standardized treatment. Although there is a research report of the excellence of usefulness of the SPECT/CT examination in terns of the exact diagnosis before and after the procedure, the bone cement material used in the procedure influences the image quality by forming an artifact in the CT image. Therefore, the objective of the research lies on evaluating the effect the bone cement gives to a SPECT/CT image. Materials and Methods: The images were acquired by inserting a model cement to each cylinder, after setting the background (3.6 kBq/mL), hot cylinder (29.6 kBq/mL) and cold cylinder (water) to the NEMA-1994 phantom. It was reconstructed with Astonish (Iterative: 4 Subset: 16), and non attenuation correction (NAC), attenuation correction (AC+SC-) and attenuation and scatter correction (AC+SC+) were used for the CT correction method. The mean count by each correction method and the count change ratio by the existence of the cement material were compared and the contrast recovery coefficient (CRC) was obtained. Additionally, the bone/soft tissue ratio (B/S ratio) was obtained after measuring the mean count of the 4 places including the soft tissue(spine erector muscle) after dividing the vertebral body into fracture region, normal region and cement by selecting the 20 patients those have performed PVP from the 107 patients diagnosed of compression fracture. Results: The mean count by the existence of a cement material showed the rate of increase of 12.4%, 6.5%, 1.5% at the hot cylinder of the phantom by NAC, AC+SC- and AC+SC+ when cement existed, 75.2%, 85.4%, 102.9% at the cold cylinder, 13.6%, 18.2%, 9.1% at the background, 33.1%, 41.4%, 63.5% at the fracture region of the clinical image, 53.1%, 61.6%, 67.7% at the normal region and 10.0%, 4.7%, 3.6% at the soft tissue. Meanwhile, a relative count reduction could be verified at the cement adjacent part at the inside of the cylinder, and the phantom image on the lesion and the count increase ratio of the clinical image showed a contrary phase. CRC implying the contrast ratio and B/S ratio was improved in the order of NAC, AC+SC-, AC+SC+, and was constant without a big change in the cold cylinder of the phantom. AC+SC- for the quantitative count, and AC+SC+ for the contrast ratio was analyzed to be the highest. Conclusion: It is considered to be useful in a clinical diagnosis if the application of AC+SC+ that improves the contrast ratio is combined, as it increases the noise count of the soft tissue and the scatter region as well along with the effect of the bone cement in contrast to the fact that the use of AC+SC- in the spine SPECT/CT examination of a PVP performed patient drastically increases the image count and enables a high density of image of the lesion(fracture).

  • PDF

Research of Protocols for Optimization of Exposure Dose in Abdominopelvic CT - (복부-골반 CT검사 시 피폭선량 최적화에 관한 프로토콜 연구)

  • Hong, Dong-Hee
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.245-251
    • /
    • 2017
  • This study measured the exposure dose during abdominal-pelvic CT exam which occupies 70% of CT exam and tried to propose a protocol for optimized exposure dose in abdomen and pelvis without affecting the imagery interpretation. The study scanned abdomen-pelvis using the current clinical scan method, the 120 kVp, auto exposure control(AEC), as 1 phase. As for the newly proposed 2 phase scan method, the study divided into 1 phase abdomen exam and 2 phase pelvis exam and each conducted tube voltage 120 kVp, AEC for abdomen exam, and fixed tube current method in 120 kVp, 100, 150, 200, 250, 300, 350, 400 mA for pelvis exam. The exposure dose value was compared using $CTDI_{VOL}$, DLP value measured during scan, and average value of CT attenuation coefficient, noise, SNR from each scan image were obtained to evaluate the image. As for the result, scanning of 2 phase showed significant difference compared to 1 phase. In $CTDI_{VOL}$ value, the 2 phase showed 26% decrease in abdomen, 1.8~59.5% decrease in pelvis for 100~250 mA, 12.7%~30% increase in pelvis for 300~400 mA. Also, DLP value showed 53% decrease in abdomen and 41~81% decrease in pelvis when scanned by 2 phase compared to 1 phase, but it was not statistically significant. As for the SNR, when scanning 2 phase close to heart, scanning 1 phase close to pelvis, scanning and scanning 1 phase at upper and lower abdomen, it was higher when scanning 2 phase for 200~250 mA. Also, the CT number and noise was overall similar, but the noise was high close to pelvis. However, when scanning 2 phase for 250 mA close to pelvis, the noise value came out similar to 1 phase, and did not show statistically significant difference. It seems when separating pelvis to scan in 250 mA rather than 400 mA in 1 phase as before, it is expected to have reduced effect of exposure dose without difference in the quality of image. Thus, for patients who often get abdominal-pelvic CT exam, fertile women or children, this study proposes 2 phase exam for smaller exposure dose with same image quality.

Investigation and Processing of Seismic Reflection Data Collected from a Water-Land Area Using a Land Nodal Airgun System (수륙 경계지역에서 얻어진 육상 노달 에어건 탄성파탐사 자료의 고찰 및 자료처리)

  • Lee, Donghoon;Jang, Seonghyung;Kang, Nyeonkeon;Kim, Hyun-do;Kim, Kwansoo;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.603-620
    • /
    • 2021
  • A land nodal seismic system was employed to acquire seismic reflection data using stand-alone cable-free receivers in a land-river area. Acquiring reliable data using this technology is very cost effective, as it avoids topographic problems in the deployment and collection of receivers. The land nodal airgun system deployed on the mouth of the Hyungsan River (in Pohang, Gyeongsangbuk Province) used airgun sources in the river and receivers on the riverbank, with subparallel source and receiver lines, approximately 120 m-spaced. Seismic data collected on the riverbank are characterized by a low signal-to-noise (S/N) and inconsistent reflection events. Most of the events are represented by hyperbola in the field records, including direct waves, guided waves, air waves, and Scholte surface waves, in contrast to the straight lines in the data collected conventionally where source and receiver lines are coincident. The processing strategy included enhancing the signal behind the low-frequency large-amplitude noise with a cascaded application of bandpass and f-k filters for the attenuation of air waves. Static time delays caused by the cross-offset distance between sources and receivers are corrected, with a focus on mapping the shallow reflections obscured by guided wave and air wave noise. A new time-distance equation and curve for direct and air waves are suggested for the correction of the static time delay caused by the cross-offset between source and receiver. Investigation of the minimum cross-offset gathers shows well-aligned shallow reflections around 200 ms after time-shift correction. This time-delay static correction based on the direct wave is found essential to improving the data from parallel source and receiver lines. Data acquisition and processing strategies developed in this study for land nodal airgun seismic systems will be readily applicable to seismic data from land-sea areas when high-resolution signal data becomes available in the future for investigation of shallow gas reservoirs, faults, and engineering designs for the development of coastal areas.

A Preprocessing Method for Ground-Penetrating-Radar based Land-mine Detection System (지면 투과 레이더(GPR) 기반의 지뢰 탐지 시스템을 위한 표적 후보 검출 기법)

  • Kong, Hae Jung;Kim, Seong Dae;Kim, Minju;Han, Seung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.171-181
    • /
    • 2013
  • Recently, ground penetrating radar(GPR) has been widely used in detecting metallic and nonmetallic buried landmines and a number of related researches have been reported. A novel preprocessing method is proposed in this paper to flag potential locations of buried mine-like objects from GPR array measurements. GPR operates by measuring the reflection of an electromagnetic pulse from discontinuities in subsurface dielectric properties. As the GPR pulse propagates in the geologic medium, it suffers nonlinear attenuation as the result of absorption and dispersion, besides spherical divergence. In the proposed algorithm, a logarithmic transformed regression model which successfully represents the time-varying signal amplitude of the GPR data is estimated at first. Then, background signals may be densely distributed near the regression model and candidate signals of targets may be far away from the regression model in the time-amplitude space. Based on the observation, GPR signals are decomposed into candidate signals of targets and background signals using residuals computed from the estimated value by regression and the measurement of GPR. Candidate signals which may contain target signals and noise signals need to be refined. Finally, targets are detected through the refinement of candidate signals based on geometric signatures of mine-like objects. Our algorithm is evaluated using real GPR data obtained from indoor controlled environment and the experimental results demonstrate remarkable performance of our mine-like object detection method.

When Evaluated Using CT Imaging Phantoms AAPM Phantom Studies on the Quantitative Analysis Method (AAPM Phantom을 이용한 CT 팬텀 영상 평가 시 정량적 분석 방법에 관한 연구)

  • Kim, Young-Su;Ye, Soo-Young;Kim, Dong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.8
    • /
    • pp.592-600
    • /
    • 2016
  • AAPM CT performance for special medical equipment quality control checks using a standard phantom for evaluation, using the evaluator's subjective assessment as to minimize errors due computerized assessment program to evaluate their usefulness. Phantom for evaluation AAPM CT Performance Phantom: was used, the default shooting conditions are the same as quality control checks. And, we use IMAGE J to evaluate the program. Quantitative evaluation with CT attenuation coefficient and the noise measurement, the uniformity measurement, the slice thickness measurement, contrast resolution of the measurement, a phantom image of the spatial resolution determined by the evaluation program is evaluated as self-extracting the result after processing the image, CT uniformity measurement for the evaluation that was smaller and the standard deviation of a video image processing more uniform slice thickness measurements it is difficult to evaluate due to the difference of the ratio of the measured value of the phantom image. Contrast resolution was measured cylindrical diameter 6th evaluate the shape of a circle obtained a mean value and a standard deviation of diameters, the spatial resolution of the group of source, including acceptance criteria automatically extracted result as a result of both the number of the extracted circularIt appeared. Evaluate the source image and video processing, and video to qualitative evaluation by gross were processed video image is shown excellent results. If the evaluators in order to minimize the errors of subjective judgment based on the results of the above should be done with a quantitative evaluation and qualitative evaluation utilizes a computerized assessment program is considered that further evaluation be made more efficient.

A Study on Calculation of Protection Ratio for Frequency Coordination in Microwave Relay System Networks (M/W 중계 시스템 망의 주파수 조정을 위한 보호비 계산에 대한 연구)

  • Suh Kyoung-Whoan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.105
    • /
    • pp.139-147
    • /
    • 2006
  • This paper suggests an efficient method of protection ratio calculation and shows some results applicable to frequency coordination in microwave(M/W) relay system networks, and the net filter discrimination(NFD) associated with Tx spectrum mask and overall Rx filter characteristics has been examined to obtain the adjacent channel protection ratio. The protection ratio comprises several factors such as C/N of modulation scheme, noise-to-interference ratio, multiple interference allowance, fade margins of multi-path and rain attenuation, and NFD. According to computed results for 6.7 GHz, 64-QAM, and 60 km at BER $10^{-6}$, fade margin and co-channel protection ratio are 41.1 and 75.2 dB, respectively. NFD for channel bandwidth of 40 MHz reveals 28.9 dB at the first adjacent channel, which results in adjacent channel protection ratio of 46.3 dB. In addition, NFD and protection ratio for different systems with channel bandwidth 20 and 40 MHz have been investigated to be used for actual M/W networks. The proposed method provides some merits of an easy calculation, systematic extension, and applying the same concept to frequency coordination in millimeter wave relay system networks.

마이크로파 응용을 위한 고온초전도 필터 서브-시스템

  • 강광용;김현탁;곽민환
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.3
    • /
    • pp.20-40
    • /
    • 2003
  • Since unloaded Q-value of a high-temperature superconductor(HTS) filter is very high, a bandpass filter(BPF) and a lowpass filter(LPF) with an increase of pole numbers can be fabricated without an increase of an insertion loss(IL) ; recently a 70-pole BPF is developed in USA. They have an abrupt skirt property and an excellent attenuation level for out-of band. Moreover, they can be miniaturized when lumped element resonators or the slow-wave characteristic are used. Technology of fabricating a HTS epitaxial film as well as a film of a 4 inch area also makes the planar type filter with a various structure and an enhanced power handling capability possible. Recently, the HTS filter subsystems composed of a planar-type HTS filters, a GaAs-based LNA and a mini-cryocooler are developed. The extended receiver front- end subsystems for mobile radio communications decrease the noise-figure level of the communication system and the frequency interference interacted adjacent bands, and increase the efficiency of frequency and the capacity of communication system. In this paper, theory for developing the HTS filter, its kinds, its design rules, its characteristics are reviewed. The feature of the research and market trends related to the HTS filter systems for the receiver front-end subsystem of mobile base station are surveyed.

Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey (비파괴 전자탐사에 의한 지하 매설물의 정밀탐지)

  • Shon, Ho-Woong;Lee, Seung-Hee;Lee, Kang-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges $2kHz{\sim}4MHz$ and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys.

8-VSB Remodulator for Retransmitting the Terrestrial Digital Broadcasting (지상파 디지털방송 재전송을 위한 8-VSB 재변조기)

  • Kim, Yoo-Won;Jo, Geun-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1525-1533
    • /
    • 2010
  • With the digital terrestrial television broadcasting transition, terrestrial television broadcasting have required the replacement of retransmission facilities for the analog broadcasting installed in the existing apartment, building, cable TV station, MATV system and so on. In addition, new standards have been enacted for retransmission of the digital television broadcasting in MATV system. To deal with this issue, in this paper, we propose a new 8-VSB remodulator that can retransmit signals of the terrestrial digital television broadcasting. Moreover, we present a standard and the process composition of the 8-VSB remodulator, and an experimental environment configuration for performance evaluation. To achieve this, we have implemented the 8-VSB remodulator with the sequential process components comprised of the RF signal retransmission, the TS stream modulator, the RF signal reception and demodulation. Through the simulation, we analyze the performance standard from the measured data such as spurious and phase noise. And then, we measure SNR and EVM of each attenuation step of the signal obtained by the signal processor and the 8-VSB remodulator with the same retransmission environment and conditions. Experimental results show that both the 8-VSB remodulator and the signal processor can be used as equipment for the retransmission of the terrestrial digital television broadcasting. In addition, the 8-VSB remodulator performed well to improve the transmission efficiency for the digital broadcasting signal, compare to the existing signal processor.