DOI QR코드

DOI QR Code

Research of Protocols for Optimization of Exposure Dose in Abdominopelvic CT -

복부-골반 CT검사 시 피폭선량 최적화에 관한 프로토콜 연구

  • Received : 2017.05.25
  • Accepted : 2017.06.08
  • Published : 2017.06.30

Abstract

This study measured the exposure dose during abdominal-pelvic CT exam which occupies 70% of CT exam and tried to propose a protocol for optimized exposure dose in abdomen and pelvis without affecting the imagery interpretation. The study scanned abdomen-pelvis using the current clinical scan method, the 120 kVp, auto exposure control(AEC), as 1 phase. As for the newly proposed 2 phase scan method, the study divided into 1 phase abdomen exam and 2 phase pelvis exam and each conducted tube voltage 120 kVp, AEC for abdomen exam, and fixed tube current method in 120 kVp, 100, 150, 200, 250, 300, 350, 400 mA for pelvis exam. The exposure dose value was compared using $CTDI_{VOL}$, DLP value measured during scan, and average value of CT attenuation coefficient, noise, SNR from each scan image were obtained to evaluate the image. As for the result, scanning of 2 phase showed significant difference compared to 1 phase. In $CTDI_{VOL}$ value, the 2 phase showed 26% decrease in abdomen, 1.8~59.5% decrease in pelvis for 100~250 mA, 12.7%~30% increase in pelvis for 300~400 mA. Also, DLP value showed 53% decrease in abdomen and 41~81% decrease in pelvis when scanned by 2 phase compared to 1 phase, but it was not statistically significant. As for the SNR, when scanning 2 phase close to heart, scanning 1 phase close to pelvis, scanning and scanning 1 phase at upper and lower abdomen, it was higher when scanning 2 phase for 200~250 mA. Also, the CT number and noise was overall similar, but the noise was high close to pelvis. However, when scanning 2 phase for 250 mA close to pelvis, the noise value came out similar to 1 phase, and did not show statistically significant difference. It seems when separating pelvis to scan in 250 mA rather than 400 mA in 1 phase as before, it is expected to have reduced effect of exposure dose without difference in the quality of image. Thus, for patients who often get abdominal-pelvic CT exam, fertile women or children, this study proposes 2 phase exam for smaller exposure dose with same image quality.

복부-골반 CT검사 시 피폭선량을 측정해 보고, 영상 판독에 영향을 미치지 않는 범위에서 복부와 골반의 피폭선량 최적화를 위한 프로토콜을 제시하고자 하였다. 기존 임상의 스캔 방식인 120 kVp, AEC(auto exposure control) 기법을 이용한 복부-골반을 1 phase로 스캔을 하였고, 새로 제시한 2 phase 스캔 방식은 1 phase 복부검사와 2 phase 골반검사로 각각 나누어 복부검사는 관전압 120 kVp, AEC, 골반검사는 120 kVp, 100, 150, 200, 250, 300, 350, 400 mA로 고정 관전류 기법을 이용하여 실시하였다. 스캔 시 측정된 $CTDI_{VOL}$, DLP 값을 이용해 선량값을 비교하였고, 각 스캔 영상에서 CT 감약계수와 노이즈, SNR의 평균값을 구해 영상을 평가하였다. 연구결과는 2 phase 스캔 시 1 phase 스캔 시보다 $CTDI_{VOL}$ 값은 복부에서 26%, 골반 100~250 mA에서 1.8~59.5% 감소, 300~400 mA에서 12.7~30% 증가로 유의한 차이를 보였다. 또한, DLP값은 2 phase 스캔 시 1 phase 스캔 시보다 복부에서 약 53%, 골반에서 약 41~81% 감소를 보였으나 통계적으로 유의하지 않았다. SNR은 심장주변에서 2 phase 스캔 시, 골반주변에서는 1 phase 스캔 시, 상복부와 하복부에서 1 phase 스캔 시보다 2 phase 200~250 mA 스캔 시 높게 나타났다. 또한, CT Number와 노이즈는 전반적으로 비슷한 양상을 보였지만, 골반 주변에서 노이즈가 높게 나타났다. 그러나 2 phase의 골반주변 250 mA 스캔 시 1 phase와 비슷한 노이즈값을 나타냈고 통계적으로 유의한 차이를 보이지 않았기에 통상적인 1 phase 400 mA보다 골반을 분리시켜 250 mA 스캔 시 화질에 차이 없이 피폭선량 감소효과를 볼 수 있을 것으로 본다. 그러므로 잦은 복부-골반 CT를 시행하는 환자 혹은 가임기여성, 소아의 골반은 피폭을 줄이면서 화질차이 없이 검사를 위한 2 phase 검사를 제안한다.

Keywords

References

  1. Yeongok Kim: Automatic exposure control in MDCT: A phantom study on dose reduction and image quality between different manufactures. Korea University 1-2, 2009
  2. Health Insurance Review & Assessment Service: National Health Insurance Statistical Yearbook, 2005, 2008
  3. Beonggyu Yoo, Daecheol Kweon, Jongseok Lee, Keunjo Jang, Sanghwan Jeon, Yongsoo Kim: Comparison radiation dose of Z-axis automatic tube current modulation technique with fixed tube current multi-detector row CT scanning of lower extremity venography, Journal of radiation protection, 32(3), 123-133, 2007
  4. David J. Brenner, Carl D. Elliston, Eric J. Hall, Walter E. Berdon: Estimated risks of radiation-induced fatal cancer from pediatric CT, AJR Am J Roentgenol, 176, 289-296, 2001. https://doi.org/10.2214/ajr.176.2.1760289
  5. David J. Brenner, Carl D. Elliston: Estimated radiaton risks potentially associated with full-body CT screening, Radiology, 232, 735-738, 2004. https://doi.org/10.1148/radiol.2323031095
  6. David J. Brenner: Radiaton risks potentially associated with low-dose CT screening of adult smokers for lung cancer, Radiology, 231, 440-445, 2004. https://doi.org/10.1148/radiol.2312030880
  7. Shinji Yoshinaga, Kiyohiko Mabuchi, Alice J. Sigurdson, Michele Morin Doody, Elaine Ron: Cancer risks among radiologists and radiologic technologists: review of epidermiologicstudies, Radiology, 233, 313-321, 2004. https://doi.org/10.1148/radiol.2332031119
  8. National Research Council (US); Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Ra\-diation. Health risks from exposure to low levels of ioniz\-ing radiation: BEIR VII phase Washington DC: National Academies Press, 2006
  9. Preston DL, Ron E, Tokuoka S, Funamoto S, Nishi N, Soda M, et al.: Solid cancer incidence in atomic bomb survivors: 1958-1998. Radiation research, 168, 1-64, 2007 https://doi.org/10.1667/RR0763.1
  10. International Agency for Research on Cancer: IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Ionizing radiation: part 1. X- and gamma-radiation and neutrons. Lyon: International Agency for Research on Cancer, 2000
  11. Richard T. Griffey, Aaron Sodickson: Cumulative radiation exposure and cancer risk estimates in emergency department pa\-tients undergoing repeat or multiple CT. American Journal of Roentgenology, 192, 887-892, 2009 https://doi.org/10.2214/AJR.08.1351
  12. Aaron Sodickson, Pieter F. Baeyens, Katherine P. Andriole, Luciano M. Prevedello, Richard D. Nawfel, Richard Hanson et al.: Recurrent CT, cumulative radi\-ation exposure, and associated radiation- induced cancer risks from CT of adults. Radiology, 251, 175-184, 2009 https://doi.org/10.1148/radiol.2511081296
  13. Cardis E, Vrijheid M, Blettner M, Gilbert E, Hakama M, Hill C, et al.: Risk of cancer after low doses of ionising radiation: retrospective cohort study in 15 countries. BMJ, 331, 77, 2005 https://doi.org/10.1136/bmj.38499.599861.E0
  14. Rebecca Smith-Bindman, Jafi Lipson, Ralph Marcus, Kwang-Pyo Kim, Mahadevappa Mahesh, Robert Gould, et al.: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med, 169, 2078-2086, 2009 https://doi.org/10.1001/archinternmed.2009.427
  15. Korea Food & Drug Administration: Evaluation study of patient radiation dose in CT. Seoul: Korea Food & Drug Administration, 2008
  16. Donghyun Kim, Sungjin Ko, Sesik Kang, Junghoon Kim, Seokyoon Choi, Changsoo Kim: Evaluation of image quality and dose with the change of kVp and BMI in the liver CT, Jouranl of the korea contents association, 13(6), 331-338, 2013
  17. Jongwoong Lee, Doyeon Won, Jaeeun Jung, Hyeongyun Kim: Study on image quality and radiation dose due to the arm position in the abdomen/ pelvis CT, Journal of the korean soc. radiol, 9(6),337-342, 2015 https://doi.org/10.7742/jksr.2015.9.6.337