• Title/Summary/Keyword: nodes

Search Result 8,402, Processing Time 0.033 seconds

Local Centers of the Social Network

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.213-217
    • /
    • 2011
  • For the social network of n nodes, one might be interested in finding k nodes to disseminate the information as quickly as possible or to identify key nodes of high "local centrality". I propose two algorithms for determining k "local centers" of the network and work on a real case.

Time Synchnorinization Scheme for Multi-Hop Wireless Sensor Network (다중 홉 무선 센서네트워크를 위한 시간 동기화 기법)

  • Kim, Gi-Hyeon;Eom, Tae-Hwan;Hong, Won-Kee
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.2 no.3
    • /
    • pp.138-144
    • /
    • 2007
  • Wireless Sensor Network(WSN) consists of a lot of light-weight sensor nodes with the capability of wireless communication. Studies have been done to improve stability and fault-tolerancy of WSN because the sensor nodes are basically vulnerable to the harsh environment. Specially, the time synchronization among sensor nodes becomes a challenging issue in WSN. All the local times should always keep the same with each other in the sensor field to perform data aggregation and energy-aware communication in WSN. In this paper, a new time synchronization technique is proposed to operate efficiently irrespective of the number of sensor nodes and the number of hops needed to cover all sensor nodes for synchronization. Simulation results show that the proposed technique has the lowest amount of packet traffic among the several time synchronization techniques.

  • PDF

Access Policy Transfer Between Active Nodes Using Identities

  • Kim, Young-Soo;Han, Jong-Wook;Seo, Dong-Il;Sohn, Seung-Won
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2178-2181
    • /
    • 2003
  • Active networks allow active node’s functionality to be extended dynamically through the use of active extensions. This flexible architecture facilitates the deployment of new network protocols and services. However, the active nature of a network also raises serious safety and security concerns. These concerns must be addressed before active networks can be deployed. In this paper we look at how we can control active extension’s access to different active nodes. Specifically, the authentication between active nodes is very important in this case. We use unique identity each node has for transferring access policies between active nodes. In this paper, we suggest a new method of transferring access policies performing authentications using identities between active nodes.

  • PDF

Scalable and Low Cost Localization Method for Wireless Sensor Networks (확장성과 비용을 고려한 무선 센서 네트워크에서의 위치 추정 기법)

  • Choi, Jae-Young;Kwon, Wook-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.139-142
    • /
    • 2003
  • Location information of individual nodes is useful for routing and some other functions in wireless sensor networks. Each node can use GPS to know its position. However, the GPS service can not be practical to use due to cost efficiency, power, and computing capability. This paper proposes the localization method to make nodes know their location in case of a few nodes knows their position information. The proposed method is named as VALT (Virtual Anchor based Localization using Triangulation method). It uses the virtual anchor concept and calculates the location of individual nodes by means of the triangulation method. This method helps all nodes to determine their position with low cost and high scalability.

  • PDF

Towards Evolutionary Approach for Thermal Aware In Vivo Sensor Networks

  • Kamal, Rossi;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.369-371
    • /
    • 2012
  • Wireless sensor networks have taken immense interest in healthcare systems in recent years. One example of it is in an in vivo sensor that is deployed in critical and sensitive healthcare applications like artificial retina, cardiac pacemaker, drug delivery, blood pressure, internal heat calculation, glucosemonitoring etc. In vivo sensor nodes exhibit temperature that may be very dangerous for human tissues. However, existing in vivo thermal aware routing approaches suffer from hotspot creation, delay, and computational complexity. These limitations motivate us toward an in vivo virtual backbone, a small subset of nodes, connected to all other nodes and involved in routing of all nodes, -based solution. A virtual backbone is lightweight and its fault-tolerant version allows in vivo sensor nodes to disconnect hotspot paths and to use alternative paths. We have formulated the problem as m-connected k-dominating set problem with minimum temperature cost in in vivo sensor network. This is a combinatorial optimization problem and we have been motivated to use evolutionary approach to solve the problem.

Analysis of Network Chain using Dynamic Convolution Model (동적 확률 재규격화를 이용한 네트워크 연쇄 관계 해석)

  • Lee, Hyungjin;Kim, Taegon;Lee, JeongJae;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • Many classification studies for the community of densely-connected nodes are limited to the comprehensive analysis for detecting the communities in probabilistic networks with nodes and edge of the probabilistic distribution because of the difficulties of the probabilistic operation. This study aims to use convolution method for operating nodes and edge of probabilistic distribution. For the probabilistic hierarchy network with nodes and edges of the probabilistic distribution, the model of this study detects the communities of nodes to make the new probabilistic distribution with two distribution. The results of our model was verified through comparing with Monte-carlo Simulation and other community-detecting methods.

MAP : A Balanced Energy Consumption Routing Protocol for Wireless Sensor Networks

  • Azim, Mohamed Mostafa A.
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.295-306
    • /
    • 2010
  • Network lifetime is a critical issue in Wireless Sensor Networks (WSNs). In which, a large number of sensor nodes communicate together to perform a predetermined sensing task. In such networks, the network life time depends mainly on the lifetime of the sensor nodes constituting the network. Therefore, it is essential to balance the energy consumption among all sensor nodes to ensure the network connectivity. In this paper, we propose an energy-efficient data routing protocol for wireless sensor networks. Contrary to the protocol proposed in [6], that always selects the path with minimum hop count to the base station, our proposed routing protocol may choose a longer path that will provide better distribution of the energy consumption among the sensor nodes. Simulation results indicate clearly that compared to the routing protocol proposed in [6], our proposed protocol evenly distributes the energy consumption among the network nodes thus maximizing the network life time.

An Approximation Scheme For A Geometrical NP-Hard Problem (기하학적 NP-hard 문제에 대한 근사 접근법)

  • Kim, Joon-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.8
    • /
    • pp.62-67
    • /
    • 2007
  • In some wireless sensor networks, the sensor nodes are required to be located sparsely at designated positions over a wide area, introducing the problem of adding minimum number of relay nodes to interconnect the sensor nodes. The problem finds its form in literature: the Minimum number of Steiner Points. Since it is known to be NP-hard, this paper proposes an approximation scheme to estimate the minimum number of relay nodes through the properties of the abstract from. Reducing the number of nodes in a sensor network, the amount of data exchange over the net will be far decreased.

Control Method for the number of check-point nodes in detection scheme for selective forwarding attacks (선택적 전달 공격 탐지 기법에서의 감시 노드 수 제어기법)

  • Lee, Sang-Jin;Cho, Tae-Ho
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.387-390
    • /
    • 2009
  • Wireless Sensor Network (WSN) can easily compromised from attackers because it has the limited resource and deployed in exposed environments. When the sensitive packets are occurred such as enemy's movement or fire alarm, attackers can selectively drop them using a compromised node. It brings the isolation between the basestation and the sensor fields. To detect selective forwarding attack, Xiao, Yu and Gao proposed checkpoint-based multi-hop acknowledgement scheme (CHEMAS). The check-point nodes are used to detect the area which generating selective forwarding attacks. However, CHEMAS has static probability of selecting check-point nodes. It cannot achieve the flexibility to coordinate between the detection ability and the energy consumption. In this paper, we propose the control method for the number fo check-point nodes. Through the control method, we can achieve the flexibility which can provide the sufficient detection ability while conserving the energy consumption.

  • PDF

Efficient Evaluation of Path Algebra Expressions

  • Lee, Tae-kyong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.1-15
    • /
    • 2000
  • In this paper, an efficient system for finding answers to a given path algebra expression in a directed acylic graph is discussed more particulary, in a multimedia presentration graph. Path algebra expressions are formulated using revised versions of operators next and until of temporal logic, and the connected operator. To evaluate queries with path algebra expressions, the node code system is proposed. In the node code system, the nodes of a presentation graph are assigned binary codes (node codes) that are used to represent nodes and paths in a presentation graph. Using node codes makes it easy to find parent-child predecessor-sucessor relationships between nodes. A pair of node codes for connected nodes uniquely identifies a path, and allows efficient set-at-a-time evaluations of path algebra expressions. In this paper, the node code representation of nodes and paths in multimedia presentation graphs are provided. The efficient algorithms for the evaluation of queries with path algebra expressions are also provided.

  • PDF