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Abstract

In some wireless sensor networks, the sensor nodes are required to be located sparsely at designated positions over a

wide area, introducing the problem of adding minimum number of relay nodes to interconnect the sensor nodes. The
problem finds its abstract form in literature! the Minimum number of Steiner Points. Since it is known to be NP-hard,
this paper proposes an approximation scheme to estimate the minimum number of relay nodes through the properties of
the abstract form. Reducing the number of nodes in a sensor network, the amount of data exchange over the net will be

far decreased.

Keywords : Sensor networks, interconnection, deployment, optimizations.

1. Introduction

Sensor networks are wireless networks in an ad
hoc fashion. There are many sensor nodes in a
sensor network, and a sensor node is autonomous
device equipped with
communication capabilities. Sensor nodes are spread

sensing, processing, and
over an area to gather information there and send it
to a data sink, the user of the information. There are
many different purposes of using sensor networks,
and accordingly many ways of placing the sensor

nodes over the area™. In a military battle field, the
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sensor nodes would be dropped from an air plane and
then they will form a self-configured network.
However, deployment of redundant nodes may cause
much more message exchanges than enough,
resulting in as much resource consumptions including
powers. Another kind of i)lacing sensor nodes is the
one for the temperature surveillance over a wide wild

B In this case, one may

area for ecological purposes
need to figure out the locations of some sensor nodes
based on the geological information. This paper deals
with the case that the sensor nodes are likely to be
located sparsely over a wide area, and some sensors
may have reasons to be located at specific locations.
So, the

temperatures over an ecological area, the sensor

in general case of measuring the

nodes are assumed to be located sparsely over a
wide area and each of them can be put at any point.
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To make such a sparse placement of sensor nodes
over a wide area, we should introduce relay nodes so
that the sensor nodes should be interconnected when
nodes located beyond the
transmission radius r of their near-by neighbors.

some  sensor are
Interconnection here means to have close enough
distance for each node to more than one of its
neighbors to be able to communicate with each other
in the wireless network. We may regard that the
relay nodes have the same hardware to the sensor
nodes, but their function of sensing may be turned
off. Assuming that the locations of the sensor nodes
the

interconnection turns out to be the problem of getting

are predetermined by given conditions,
the locations of the relay nodes among the sparsely
scattered sensor nodes so that the minimum number
of relay nodes should be deployed over the area. This
interconnection problem finds its abstract form in
literature, which is named as the Minimum number
of Steiner Points (denoted STP-MSP). Since
STP-MSP is NP-hard”, challenges have been made
to get the best approximation ratio to the optimal
solutions. This paper proposes an approximation
scheme that shows: one may build a polynomial-time
algorithm that gives the approximation ratio 2 to the
optimal number of relay nodes. The algorithm is not
presented explicitly. Instead, the scheme involves
enough descriptions on how it can be implemented.
With the adaptations to the practical conditions that
may take place in the real-world sensor networks,
the output from the proposed scheme will make the

best ever layout toward the optimal deployment.
II. Definitions

The problem definition of Minimum number o

Steiner Points from [6] is: Given n terminals

(mathematical points) on the Euclidean plane R*and

a positive constant r (€R), find a Steiner Tree
interconnecting all the terminals with the minimum
number of Steiner points such that the Euclidean
length of each edge < r®. One may see that
STP-MSP is analogous to the interconnection of
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sensor networks: the terminals are the sensor nodes,
the Steiner points are the relay nodes, and r is the
transmission radius. For the approximation, we are to
build a scheme for the loose version of the problem.
The condition of finding the minimum number of
Steiner points is taken off from STP-MSP and so
the loose version is: Given n terminals on the
Euclidean plane RZ%and a positive constant r, find a
Steiner tree that interconnects all terminals with
Steiner points such that the Euclidean length of each
edge < r. Then, one may show to buid a scheme
for the loose version so that the algorithm from the
scheme should produce feasible solutions such that
the number of the Steiner points of every feasible
solution < twice the optimal number of Steiner
points. For a problem instance of the loose version,
ie. a set of terminals on R?, one may find a set of
SteinerA points as a solution, and draw circles so that
each Steiner point should be the center of each circle
let a Steiner—Cover be the resulting set of circles.
There exist many Steiner-Covers for a problem
instance. When the Steiner points of a Steiner-Cover
optimal, the called
Steiner-Cover,,. All circles in this paper have the

are Steiner-Cover is a

constant radius r. Let the bounding-box of a set of

terminals on R? be the smallest rectangle enclosing
the set. A rectangle is an axis—aligned one that is a
partition of the bounding-box. The size of the
rectangle is the length of its longer edge. A
line-separator of a rectangle is a straight line
segment which is parallel to the shorter edge of the
rectangle. the line-separator partitions the rectangle
into two of at least 1/3 of the area each.

Definition 1. (Tiling: dividing the given area) A
tiling of a rectangle R is a binary tree (a hierarchy)
of sub-rectangles of R. The rectangle R is at the
root. If the size of R=1 (unit distance), the
hierarchy contains nothing else. Otherwise, the root
contains a [line-separator for R, and has two
sub-trees that are tilings of the two rectangles into
which the line-separator divides A.

Note that rectangles at depth d in the tiling form
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a partition of the root rectangle. The set of all
rectangles at depth d+1 is a refinement of the
partition obtained by putting a line-separator through
each depth d rectangle of size > 1.

Definition2. (portals) A portal in a tiling is any
point that lies on the perimeters of rectangles in the
tiling.

A set of portals P is called m-regular for the
tiling when there are m (an integer) equidistant
portals on the [line-separator. Likewise, p (an
integer) points that lie equidistantly on the perimeter
of a circle are named indexed points.

Definition3.(m-light Steiner-Cover) Let m e Z*,,
S be a tiling of the bounding-box, and P be an
m-regular set of portals on this tiling. Then, a
Steiner-Cover in which each circle crosses with at
least one portal in P-at an indexed point is m-light
with respect to S.

II. Shorter radius

Given a set of terminals on R?, there are infinitely
many candidate solutions of the problem. To form a
feasible scheme we are to set up a frame (partitions
with portals) over the set of terminals so that there
may exist only polynomially many feasible solutions
over the frame. Note that a solution is a Steiner-
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Cover for the given terminals. One may show that
there is a subset of the polynomially many feasible
it
Steiner-Cover that has twice as many circles as a

solutions such that each solution in is a

Steiner-Cover

o does let m-light Steiner—Cover,,,,

be a solution in the subset. A polynomial time
Dynamic Programming (DP) can be designed to
identify all the polynomially many feasible solutions
over the frame, and the one with the minimum
number of circles will be chosen as the desired
solution. Since all the m-light Steiner-Covers,,,’s
must also be checked by the DP, # (circles in the
desired  solution) # (circles m-light
Steiner-Cover,,,,), resulting in the ratio 2 to the
optimal solutions. The progf is grounded on the
following properties. There exist optimal solution
trees of the STP-MSP problem with the properties
from [6]: (1) No two edges cross each other. (2) Two
edges meeting at a vertex form an angle of at least
60°. (3) If two edges form an angle 60° they have
the same length. Left side of Figure 2 shows the

<

in

radius, the distance to nearby sensor nodes, of the

central sensor node, where each of r,, ry and r, are
<

r. The right side of Figure 2 shows that two
replaced sensor nodes linked by r, may interconnect
the same terminals with the property that each ry, 1y,
ry 1y 15 and ry is < r. Following lemyna shows this
shortening of radii.

Lemma. (shortening radii)
For a Sensor node in a Senor Network, let the
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transmission radius r, be given. Replacing the central
sensor node by two ones within the distance r, = /2,
where the line of r, passes through the center. Then
the triangular inequality implies: There exists r, such
that r, = r, — x, where 0 < x < r/2 O

Theorem (Structure Theorem) For a set of
R

Steiner—-Covers,,,'s that cover a Steiner-Cover,,.

terminals on there are infinitely many
The set also has an associated tiling of the
bounding—box such that some Steiner—-Cover,,,"s are
m-light on this tiling. (See Figure 4)

Cpt from an assumed

Prodf- By Lemma, each circle
Steiner-Cover, can be covered by two other new
nodes:

interconnect the sensor nodes inside. From each ¢,

sensor for each circle c,, one may
covered by two other new sensor nodes we may
build up a Steiner-Covery, that covers Steiner-
Cover,,. Let pairy;,
sensor nodes. By definition, there are infinitely many
and all of them are actually
Steiner-Covers,,. One may build up a tiling over
the bounding-box on R? so that a circle formed by

new sensor nodes can be passed through by a

be ¢, covered by two other new

opt

Steiner-Covery,

line-separator at least once. The tiling can be

a8 4. He 2 (= r) olioll FIHE F JKe|
LE,
Fig. 4. Two new nodes in distance 2 of r,
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a3 5.
Fig. 5.

S MMEs FH 2509 pairg,
Infinitely many pairq, around the central
sensor node.

acquired whenever more than one bottom-most
rectangles can be put inside a circle of radius r.
Now, one may set the value w as the width between
the inside circle and the outer one, and w is wider
than the inter-portal distance d so that there should
lie more than one portals along the part of the
line-separator. Since there are infinitely many pairy,
some of them should turn out to be m-light pairy,.
Therefore, there exist some m-light Steiner-
Covery, ;s on the tiling. O

A DP finds minimum m-light Steiner—Cover over
the tiling in a polynomial time, where # (the circles
in the minimum m-light Steiner-Cover) = # (the
circles in Steiner-Cover,,,,). The size of the bottom
most rectangle of the tiling should be chosen to be
small so that brute—force search can be made to
identify all the m-light Steiner—Covers that cover the
terminals in the rectangle. According to the tling,
two neighboring bottom most rectangles meet along a
forming an upper-level
rectangle. We may union two minimum m-light

line, the line-separator,
Steiner-Covers from each of the two bottom-most
rectangles, forming 2™ upper-level m-light Steiner-
Cover. For the union, firstly enumerate all the 27
combinations of portals (chosen portals) out .of m
portals along the line-separator. For each case of the
combinations (chosen portals), join two minimum
m-light Steiner-Covers from each of the two bottom
rectangles respectively, the
Steiner-Covers should pass through the chosen

level where
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portals. Fach case of the combinations may have
many cases of the joins. The one with the minimum
number of circles among the joins is kept as the
m-light Steiner-Cover the of the
combinations. When joining, if duplicating circles

for case
come up from the two rectangles for an upper-level
portal, one of them should be deleted. This process
goes all the [line-separators at the
bottom-most level. Again up along the tiling, the
rectangles  also
rectangles at the same level, and the same process

on for

upper-level have neighboring
repeats. The process goes up until the top level,
where the final minimum m-light Steiner-Cover is
acquired. As mentioned, DP scans all the m-light
Steiner-Cover and finds
polynomial time, which is described as follows. The
time complexity, analogously by [7], is bounded by
the number of rectangles in the tiling and other
combinational factors that can be chosen to be
bounded. Now, we need to show the number of
entries of the lookup table for this DP is polynomial
and the run time for each of the entries is poly time.
An entry is mixed by the triple: (a) A rectangle, (b)
A set of ki (£ 4m) portals along the perimeter of
the rectangle, and (c) The choices of k; circle
positions, ie., the permutation of size k; out of the p
indexed-points, {0, 1, 2, , p-1}

For (a), the number of distinct rectangles is at

the minimum one in a

most (2) For (b), each rectangle has 4 sides which

are the parts of the line-separators of some upper
level rectangles. The m portals on the line separator
are evenly distanced, so they are completely
determined once we know the line-separators. But
the number of choices of a line-separator is at most

the number of pairs of points, which is (g) This

accounts for the factor O((n2)4). Furthermore, once
we have identified the set of < 4m portals on the
four sides, the number of ways choosing a set of kl

4m

portals is ( ) So the choices in (h) is

n8X22=1(4£n), where c=4-§f—, the maximum

7\518H4 NP-hard EX0f et 2A B2H

(812)

dE=R

number of crossings. For (c), for each portal chosen
above, there are p choices of a circle shapes. Hence
we can upper bound the size of the lookup table by

ntxnd x = 1(4;n)pk — 0(n12 % (2p)4m) — n0(1)7

where m should be chosen as m = O(log n) to
form a polynomial expression, ¢ IS a constant as

c= 4~§T£, p and r are mentioned before, and L is

the size of the bounding-box.
IV. Conclusion

The high-degree polynomial time of DP can be
accommodated because the computation for a given
instance of the Sensor Network is a batch process,
not a real time one, before the deployment of the
sensor nodes. If needed, to reduce the computation
time, one may divide the computation into parallel
ones or design a randomized algorithm, as can be
referenced from the related research of [7). The
computation by the proposed scheme may produce a
network layout, over which at worst twice of the
minimum number of relay nodes can be deployed, far
decreasing the number of message exchanges
between the nodes,
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