
ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

1. INTRODUCTION

Active networks allow active node(router or switch)’s
functionality to be extended dynamically through the use of
active extensions. Namely, we will call software modules that
extend active node functionality “extensions”. This flexible
architecture facilitates the deployment of new network
protocols and services. However, the active nature of a
network also raises serious safety and security concerns [1][2].
One particular security question is how we can limit what
resources and data active extensions can access on the active
node. There exist some solutions like using access control
policy. On the other hand, it can be the security issue that how
we can control active extension’s access to different active
nodes. Specifically, the authentication between active nodes is
very important in this case. This paper is dealing with the
latter one. We suggest a new way of transferring access
policies performing authentications using identities, not using
the Kerberos[3] mechanism traditionally.

The rest of the paper is organized as follows. In Section II,
we deal with security issues for active node. In Section III, we
present a traditional way of solving this problem, Kerberos
mechanism for transferring access policies. We suggest a new
method for transferring access policies improving
conventional one and conclude in Section IV.

2. SECURITY ISSUES FOR ACTIVE NODES

While an active node architecture increases flexibility, it

also raises safety and security concerns. Safety centers around
the question of how we can safely execute extensions that may
be faulty, e.g., they could cause the node or node components
to fail. These problems are addressed by isolating the
extension code from the rest of system, either using runtime
mechanisms (e.g., Java sand boxing, virtual memory) or
compile time mechanisms (e.g., Proof carrying code [4]). We
divide security issues into two categories in this paper. One is
the internal security issue and the other is the external security
issue.

The internal security issue is focusing on active node
architecture itself. We want to prevent active extensions from
disrupting the network service received by other users, for
example by using their resources or by reading or writing their
data. This problem is similar to the problem addressed by a
traditional operating system, except that nodes have a very
different task. Their primary responsibility is forwarding and
processing packets, not general-purpose data processing,
storage management, or user interface support. This means

that node operating systems face a different set of security
concerns. In order to perform their tasks (e.g., implementing
QoS, selecting nodes, or encrypting data), node extensions
must be able to control critical node resources such as link
bandwidth and access critical data structures such as the
routing table. Extensions must also be able to manipulate data
traffic, e.g., dropping packets or modifying packet contents. It
is easy to see that without proper security mechanisms,
extensions can use these operations to harm other users. For
example, malicious or faulty extensions can steal bandwidth
by making invalid reservations, can corrupt the routing table,
or can manipulate data traffic that belongs to other users.

Access Policy Transfer Between Active Nodes Using Identities

Youngsoo Kim, Jongwook Han, Dongil Seo, Seungwon Sohn*
* Network Security Department, Information Security Technology Division, ETRI, Daejeon, Korea

(Tel : +82-42-860-5856; E-mail: blitzkrieg@etri.re.kr)

Abstract: Active networks allow active node’s functionality to be extended dynamically through the use of active extensions. This
flexible architecture facilitates the deployment of new network protocols and services. However, the active nature of a network also
raises serious safety and security concerns. These concerns must be addressed before active networks can be deployed. In this
paper we look at how we can control active extension’s access to different active nodes. Specifically, the authentication between
active nodes is very important in this case. We use unique identity each node has for transferring access policies between active
nodes. In this paper, we suggest a new method of transferring access policies performing authentications using identities between
active nodes.

Keywords: Active networks, Active Extension, Identity, Cryptography

On the other hand, the external security issue is focusing on
communication between active nodes. For example, active
extensions can implement specialized routing protocols or a
customized network-monitoring infrastructure. However,
given their ability to access critical node resources and affect
data flows, extensions can pose serious threats to the active
network and other users. The threats range from risks local to
one node to risks that can span the whole network. For
example, without proper access control, an extension can steal
bandwidth for its flows by either increasing its bandwidth
reservation parameters, or by associating its flows with
resource nodes of other users[5]. Alternatively, a malicious
extension can reroute random flows to disrupt other users’
traffic, or issue a Denial-of-Service (DoS) attack by tunneling
flows to a victim server or network segment. So, we need
some policies to control authority of access. Furthermore, to
exchange those policies between active nodes, they should
have authentication step between them.

3. CONVENTIONAL METHOD FOR
TRANSFERRING ACCESS POLICIES

Figure 1 depicts our system architecture. The user is the

entity that injects extension code into nodes; it is also known
as the Extension Initiator (EI). We designed a protocol for the
User, Policy Manager (PM) and Active Node (R) to securely
exchange security policy information and extension code.

The communications between the users, PM and active
nodes must be secure to ensure the security of the system. We
designed a secure communication protocol based on Kerberos
that allows (1) users to authenticate with nodes through the
use of the Policy Manager; (2) secure transportation of
extension code and corresponding access policy information to
active nodes.

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

Fig. 1 System Architecture

We assume there is one Policy Manager (PM) operated by

a trusted authority within a domain. It has full control and
knowledge of the active nodes and links of this domain. A
network manager will typically be responsible for defining the
policy for extensions in the network using a policy definition
language. Users within the domain must register with the PM
before trying to install extensions on the nodes of this domain.
The primary task of the PM is policy enforcement, i.e.,
assigning access permissions to extensions based on the policy
specified by the network manager. Besides acting as a policy
server, the PM also serves as the authentication center and
session key distribution center in the security protocol we
present below. The protocol allows policies and extension
code segment to be transferred to active nodes securely by
guaranteeing message integrity and confidentiality, and it also
allows the PM and nodes to authenticate users.

The PM decides on an access policy for a user based on the
identity of the user and the operations the extension would like
to perform on the selected node. An access policy must
specify the following information:

• The amount of resources, e.g., bandwidth, can be allocated
to the extension.

• The filter envelope that defines the traffic that can be
accessed. For example, the PM may only allow a user’ s
extension to install .Filters that have a source address field
equal to the user’ s host address. This way, the PM limits
the extension to only access traffic that is initiated by the
original user.

• Access rights that regulate operation on bandwidth. For
example, the PM may only allow a extension to monitor the
bandwidth usage of a resource node and disallow other
operations on the node.

• Control over traffic processing. The PM may specify what
type of processing modules can be applied to certain flows.
For the processing that has network-wide effect, the PM
must specify some extra parameters to prevent
network-wide security violations. For example, the PM
specifies the acceptable encapsulation source and
destination addresses for tunneling. The PM determines this
information based on the concept of a “ virtual mesh” ,
which identities all the network resources a user is allowed

to use [6]. The idea is that users should only be allowed to
redirect traffic within their virtual mesh, so that they cannot
affect other parts of the network.

We use EI, extension initiator, to represent the user who wants
to install an extension. Suppose there are n EIs in the domain,
and we number them EI1, ..., EIn. Suppose there are m active
nodes in the domain and they are numbered R1, ..., Rm. We
examine the case of EIi installing an extension on Rj. Before
doing it, we need a priori registration and key distribution
process. EIi shares a secret key with PM, KEIi and Rj shares a
secret key with PM, KRj. Figure 2 and Figure 3 show the
registration/key distribution process and main process
(Extension-installing process) between PM, EIi and Rj.

Fig. 2 Registration & Key Distribution Process

The registration and key distribution process contains the

following message exchanges in order.

1. EI → PM: IDEIi, / R → PM: IDRj

EIi sends IDEIi to PM for registering its identity and getting
private key. Rj also sends IDRj to PM for the same reason.

2. PM → EI: KEIi, / PM → R: KRj

Receiving identities of EIi and Rj, PM generates their private
keys, stores {IDEIi, KEIi} and {IDRj, KRj} in its database and
sends each private key to EIi and Rj.

Fig. 3 Extension-installing Process

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

We examine the case of EIi installing an extension on Rj.
The protocol contains the following message exchanges in
order.

1. EI → PM: IDEIi,KEIi (IDRj,NEIi, L)

IDEIi is the identifier of delegate EIi; IDRj is the identifier of
target node Rj ; NEIi is a random sequence number chosen by
EIi as a nonce to prevent replay; and L is a “ proposal” that
contains the list of resources that the extension to be installed
will access on node Rj.

This message serves three purposes. First, this is the way
that EIi authenticates itself to the PM. Upon receiving this
message, PM uses the key corresponding to EIi to decrypt the
second half of the message. If the message is successfully
decrypted, the PM is then sure about the authenticity of the
message and the freshness can be verified with the nonce.
Second, EIi uses this message to request a session key to
communicate with Rj ; Third, EIi requests an access policy,
i.e., the set of access permissions for the extension it is
installing.

After receiving the above message, the PM executes the
following steps: (1) the PM creates a globally unique identity
for the extension to be installed IDEIijk, which means the kth
extension EIi creates on Rj ; (2) the PM generates a session
key Kij for communication between EIi and Rj ; (3) the PM
produces an access policy, P, for this extension based on the
identify of EIi and the proposal L. It then sends the following
reply message.

2. PM → EI:
KEIi (Kij, IDRj,IDEIijk,P,NEIi + 1),KRj (Kij,IDEIi,IDEIijk, P,NEIi + 1)

This reply message has two parts. Part 1 is encrypted with
EIi’ s secret key. EIi decrypts it to retrieve the session key,
the identity for the extension, the access policy and a nounce.
Part 2 is encrypted with Rj’ s secret key; it contains the
session key, extension identity and the policy. IDEIijk and P
together are called a credential.

3. EI → R:
Kij(extension- code,IDEIi,IDEIijk, P,NEIi + 1),
KRj (Kij,IDEIi,IDEIijk, P,NEIi + 1)

This message also has two parts. The first part is the EI’ s
identity, the extension code, the credential and the nounce
encrypted with the session key. For performance concern, the
code part can be replaced with a message digest and the code
itself can be sent in clear message if no secrecy of the code is
required. An alternative to including the code with the request
is to replace it with a reference to a secure code server. The
second part is the same as the second part in the previous
message.

When Rj receives the message, it decrypts the second part
of the message to reveal the shared key Kij and the credential
for this extension. At this stage, Rj believes that this part of the
message is from PM because PM is the only other entity that
knows KRj . Rj uses key Kij to decrypt the first part of the
message. If successful, Rj now knows that this message is
from EIi, since it is the only party, other than the PM, that
knows Kij .

The EI identifiers and the sequence numbers in these two
message parts must match to prevent tampering and replay
attack.

4. R → EI: Kij(confirm-message,IDEIi,IDEIijk,NEIi + 2)

Rj sends this message to EIi to report the outcome of the

extension installation: success or failure.

4. THE PROPOSED SCHEME

We suggest an improved method of transferring access
policies. We use identity-based public key cryptosystem
instead of private key cryptosystem like Kerberos[7][8]. The
proposed scheme is a transformed public key cryptosystem.
Instead of general public key cryptosystem that generates
public/private key pairs randomly and opens public key to the
public, identity, each entity (e.g., Extension Initiator or Active
Node) has uniquely, plays a role of public key in
identity-based public key cryptosystem. In our case, we use IP
address as an identity. The private key corresponds to the
public key is computed and distributed by PM at the key
distribution process.

We use EI, extension initiator, to represent the user who
wants to install an extension. Suppose there are n EIs in the
domain, and we number them EI1, ..., EIn. Suppose there are
m active nodes in the domain and they are numbered R1, ...,
Rm. We examine the case of EIi installing an extension on Rj.
Before doing it, we need a priori registration and key
distribution process. EIi shares a secret key with PM, KEIi and
Rj shares a secret key with PM, KRj. Figure 4 and Figure 5
show the registration/key distribution process and main
process (Extension-installing process) between PM, EIi and
Rj.
The registration and key distribution process contains the
ollowing message exchanges in order. f

Fig. 4 Registration and Key Distribution Process

1. EI → PM: IDEIi, / R → PM: IDRj

EIi sends to register identity IDEii to PM. Rj also sends to
register IDRj to PM. Each identity will be used as a public key
at main process.

2. PM → EI: KEIi, / PM → R: KRj

Receiving identities of EIi and Rj, PM generates their
private keys as follows, stores {IDEIi, KEIi} and {IDRj, KRj} in
its database and sends each private key to EIi and Rj. (f and g
are functions let {IDEIi, KEIi} and {IDRj, KRj} become pairs of
{public key, private key})

KEIi = f(IDEIi), KRj = g(IDRj) (1)

We examine the case of EIi installing an extension on Rj.
The protocol contains the following message exchanges in
order.

1. EI → PM: IDEIi,KEIi (IDRj,NEIi, L)

ICCAS2003 October 22-25, Gyeongju TEMF Hotel, Gyeongju, Korea

IDEIi is the identifier of delegate EIi; IDRj is the identifier of
target node Rj ; NEIi is a random sequence number chosen by
EIi as a nounce to prevent replay; and L is a “ proposal”
that contains the list of resources that the extension to be
installed will access on node Rj.

This message serves three purposes. First, this is the way
that EIi authenticates itself to the PM. Upon receiving this
message, PM uses the key corresponding to EIi to decrypt the
second half of the message. If the message is successfully
decrypted, the PM is then sure about the authenticity of the
message and the freshness can be verified with the nounce.
Second, EIi uses this message to request a session key to
communicate with Rj ; Third, EIi requests an access policy,
i.e., the set of access permissions for the extension it is
installing.

After receiving the above message, the PM executes the
following steps: (1) the PM creates a globally unique identity
for the extension to be installed IDEIijk, which means the kth
extension EIi creates on Rj ; (2) the PM generates a session
key Kij for communication between EIi and Rj ; (3) the PM
produces an access policy, P, for this extension based on the
identify of EIi and the proposal L. It then sends the following
reply message.

2. PM → EI: KEIi (IDEIijk,P,NEIi + 1)

This message is encrypted using EIi’s private key KEIi PM
has. EIi decrypts this message to get identity, P, and nounce.

3. EI → R: IDRj(extension- code,IDEIi,IDEIijk, P,NEIi + 1)

This message consists of EIi’s identity, extension code,
credential, and nounce and encrypted using active node Rj’s
public key IDRj.

4 R → EI: IDEIi(confirm-message,IDEIi,IDEIijk,NEIi + 2) .

Rj sends this message, encrypted confirm-message using EIi’s
public key IDEIi, to EIi to report the outcome of the extension
installation: success or failure.

Fig. 5 Extension-installing Process

5. CONCLUSION

We suggested an improved method of transferring access

policy between active nodes in active network environment.
This proposed scheme adopts public key cryptosystem, but it
is secure, lightweight and need not manage public key
directory. Therefore, it can be used in real world.

REFERENCES

[1] K.Psounis, “Active networks: Applications, Security,

Safety, and Architectures”, IEEE Communications
Surveys, 1999.

[2] Y.S.Kim, J.C.Na, S.W.Sohn, “A Secure Active Packet
Transfer using Cryptographic Techniques”, Journal of
The Korean Institute of Information Security and
Cryptology, pp.135-145, 2002.

[3] J.G.Steiner, B.C.Neuman, and J.I.Schiller, “Kerberos:
An Authentication Service for Open Network Systems”,
Proceedings of Winter USENIX Conference, pp.191-201,
1988

[4] George Necula and Peter Lee, “Safe Kernel Extensions
Without Run-Time Checking”, In Proceedings 2nd
Symposium on Operating Systems Design and
Implementation (OSDI’96), pp.229-243, 1996

[5] I.Stoica, H.Zhang, and T.S.Eugen, “A Hierarchical Fair
Service Curve Algorithm for Link-Sharing, Real-Time
and Priority Service”, Proceedings of the SIGCOMM’97
Symposium on Communications Architectures and
Protocols, pp.249-262, 1998

[6] Prashant Chandra, Allan Fisher, Corey Kosak, T. S.
Eugene Ng, Peter Steenkiste, Eduardo Takahashi, and
Hui Zhang, “Darwin: Customizable Resource
Management for Value-Added Network Services”, In
Sixth International Conference on Network Protocols,
pp.177-188, Austin, October 1997

[7] B.Schneier, “Applied Cryptography: Second Edition”,
Wiley, 1996..

[8] A.Shamir, “Identity-Based Cryptosystems and Signature
Schemes”, Proceedings of CRYPTO ’84,
Springer-Verlag, pp.47-53, 1985.

	Main Menu
	Previous Menu
	===============
	Search CD-ROM
	Print

	page11: 2178
	page21: 2179
	page31: 2180
	page41: 2181

