• Title/Summary/Keyword: node density

Search Result 293, Processing Time 0.028 seconds

Digital Sequence CPLD Technology Mapping Algorithm

  • Youn, Choong-Mo
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • In this paper, The proposed algorithm consists of three steps. In the first step, TD(Transition Density) calculation has to be performed. a CLB-based CPLD low-power technology mapping algorithm considered a Trade-off is proposed. To perform low-power technology mapping for CPLDs, a given Boolean network has to be represented in a DAG. Total power consumption is obtained by calculating the switching activity of each node in a DAG. In the second step, the feasible clusters are generated by considering the following conditions: the number of inputs and outputs, the number of OR terms for CLB within a CPLD. The common node cluster merging method, the node separation method, and the node duplication method are used to produce the feasible clusters. In the final step, low-power technology mapping based on the CLBs packs the feasible clusters. The proposed algorithm is examined using SIS benchmarks. When the number of OR terms is five, the experiment results show that power consumption is reduced by 30.73% compared with TEMPLA, and by 17.11 % compared with PLA mapping.

Research on the Energy Hole Problem Based on Non-uniform Node Distribution for Wireless Sensor Networks

  • Liu, Tang;Peng, Jian;Wang, Xiao-Fen;Yang, Jin;Guo, Bing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2017-2036
    • /
    • 2012
  • Based on the current solutions to the problem of energy hole, this paper proposed a nonuniform node distribution clustering algorithm, NNDC. Firstly, we divide the network into rings, and then have an analysis and calculation on nodes' energy consumption in each ring of the network when clustering algorithm is applied to collect data. We also put forward a scheme of nonuniform node distribution on the basis of the proportion of nodes' energy consumption in each ring, and change nodes' active/hibernating states under density control mechanism when network coverage is guaranteed. Simulation shows NNDC algorithm can satisfyingly balance nodes' energy consumption and effectively avoid the problem of energy hole.

A CLB-based CPLD Low-power Technology Mapping Algorithm considered a Trade-off

  • Youn, Choong-Mo;Kim, Jae-Jin
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.59-63
    • /
    • 2007
  • In this paper, a CLB-based CPLD low-power technology mapping algorithm considered a Trade-off is proposed. To perform low-power technology mapping for CPLDs, a given Boolean network has to be represented in a DAG. The proposed algorithm consists of three steps. In the first step, TD(Transition Density) calculation has to be performed. Total power consumption is obtained by calculating the switching activity of each node in a DAG. In the second step, the feasible clusters are generated by considering the following conditions: the number of inputs and outputs, the number of OR terms for CLB within a CPLD. The common node cluster merging method, the node separation method, and the node duplication method are used to produce the feasible clusters. In the final step, low-power technology mapping based on the CLBs packs the feasible clusters. The proposed algorithm is examined using SIS benchmarks. When the number of OR terms is five, the experiment results show that power consumption is reduced by 30.73% compared with TEMPLA, and by 17.11 % compared with PLA mapping.

An efficient cluster header election scheme considering distancefrom upper node in zigbee environment (Zigbee 환경에서 Upper Node와의 거리를 고려한 효율적인클러스터 헤더 선출기법)

  • Park, Jong-Il;Lee, Kyoung-Hwa;Shin, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.369-374
    • /
    • 2010
  • It is important to efficiently elect the cluster header in Hierarchical Sensor Network, because it largely affects on the lifetime of the network. Therefore, recent research is focused on the lifetime extension of the whole network for efficient cluster header election. In this paper, we propose the new Cluster Header Election Scheme in which the cluster is divided into Group considering Distance from Upper Node, and a cluster header will be elected by node density of the Group. Also, we evaluate the performance of this scheme, and show that this proposed scheme improves network lifetime in Zigbee environment.

Adaptive Mobile Sink Path Based Energy Efficient Routing Protocol for Wireless Sensor Network (무선 센서 네트워크에서 에너지 효율을 고려한 모바일 sink의 적응적 경로설정 방법)

  • Kim, Hyun-Duk;Yoon, Yeo-Woong;Choi, Won-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12A
    • /
    • pp.994-1005
    • /
    • 2011
  • In this paper, we propose a novel approach to optimize the movement of mobile sink node, called AMSP(Adaptive Mobile Sink Path) for mobile sensor network environments. Currently available studies usually suffer from unnecessary data transmission resulting from random way point approach. To address the problem, we propose a method which uses the Hilbert curve to create a path. The proposed method guarantees shorten transmission distance between the sink node and each sensor node by assigning orders of the curve according to sensor node density. Furthermore, The schedule of the sink node is informed to all of the sensing nodes so that the Duty Cycle helps the network be more energy efficient. In our experiments, the proposed method outperforms the existing works such as TTDD and CBPER by up to 80% in energy consumption.

CACHE:Context-aware Clustering Hierarchy and Energy efficient for MANET (CACHE:상황인식 기반의 계층적 클러스터링 알고리즘에 관한 연구)

  • Mun, Chang-min;Lee, Kang-Hwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.571-573
    • /
    • 2009
  • Mobile Ad-hoc Network(MANET) needs efficient node management because the wireless network has energy constraints. Mobility of MANET would require the topology change frequently compared with a static network. To improve the routing protocol in MANET, energy efficient routing protocol would be required as well as considering the mobility would be needed. Previously proposed a hybrid routing CACH prolong the network lifetime and decrease latency. However the algorithm has a problem when node density is increase. In this paper, we propose a new method that the CACHE(Context-aware Clustering Hierarchy and Energy efficient) algorithm. The proposed analysis could not only help in defining the optimum depth of hierarchy architecture CACH utilize, but also improve the problem about node density.

  • PDF

Efficient routing in multicast mesh by using forwarding nodes and weighted cost function

  • Vyas, Kapila;Khuteta, Ajay;Chaturvedi, Amit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5928-5947
    • /
    • 2019
  • Multicast Mesh based Mobile Ad-hoc NETworks (MANETs) provide efficient data transmission in energy restraint areas without a fixed infrastructure. In this paper, the authors present an improved version of protocol SLIMMER developed by them earlier, and name it SLIMMER-SN. Most mesh-based protocols suffer from redundancy; however, the proposed protocol controls redundancy through the concept of forwarding nodes. The proposed protocol uses remaining energy of a node to decide its energy efficiency. For measuring stability, a new metric called Stability of Node (SN) has been introduced which depends on transmission range, node density and node velocity. For data transfer, a weighted cost function selects the most energy efficient nodes / most stable nodes or a weighted combination of both. This makes the node selection criteria more dynamic. The protocol works in two steps: (1) calculating SN and (2) using SN value in the weighted cost function for selection of nodes. The study compared the proposed protocol, with other mesh-based protocols PUMA and SLIMMER, based on packet delivery ratio (PDR), throughput, end-to-end delay and average energy consumption under different simulation conditions. Results clearly demonstrate that SLIMMER-SN outperformed both PUMA and SLIMMER.

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

Selection-based Low-cost Check Node Operation for Extended Min-Sum Algorithm

  • Park, Kyeongbin;Chung, Ki-Seok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.485-499
    • /
    • 2021
  • Although non-binary low-density parity-check (NB-LDPC) codes have better error-correction capability than that of binary LDPC codes, their decoding complexity is significantly higher. Therefore, it is crucial to reduce the decoding complexity of NB-LDPC while maintaining their error-correction capability to adopt them for various applications. The extended min-sum (EMS) algorithm is widely used for decoding NB-LDPC codes, and it reduces the complexity of check node (CN) operations via message truncation. Herein, we propose a low-cost CN processing method to reduce the complexity of CN operations, which take most of the decoding time. Unlike existing studies on low complexity CN operations, the proposed method employs quick selection algorithm, thereby reducing the hardware complexity and CN operation time. The experimental results show that the proposed selection-based CN operation is more than three times faster and achieves better error-correction performance than the conventional EMS algorithm.

Dynamic Density-based Inhibited Message Diffusion For Reducing Overhead In Delay Tolerant Network (DTN에서 오버헤드 감소를 위한 동적 밀도 기반 메시지 확산 억제 기법)

  • Dho, Yoon-hyung;Oh, Young-jun;Lee, Kang-whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.120-122
    • /
    • 2015
  • In this paper, we proposed an algorithm of the unnecessary copied message inhibition using dynamic density what is called DDIM(Dynamic Density-based Inhibited Message diffusion) in DTNs(Delay Tolerant Networks). Existing DTN routing algorithms as Epidemic and Spray and Wait have some problems that occur large overhead in dense network due to the thoughtless message diffusion. Our proposed method, the DDIM, determines adjusted number of copied message through dynamic node density that is calculated using node's radio coverage and neighbor nodes in period time to solve message diffusion problem. It decrease overhead without losing message delivery ratio and increased latency through reducing message diffusion. In this paper, we compare delivery ratio, average latency and overhead of proposed algorithm, DDIM, and existing DTN routing algorithm and prove enhanced performance through simulation results.

  • PDF