• 제목/요약/키워드: nociceptive

Search Result 265, Processing Time 0.031 seconds

Ryanodine Receptor-mediated Calcium Release Regulates Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Nitric Oxide (NO) is an important signaling molecule in the nociceptive process. Our previous study suggested that high concentrations of sodium nitroprusside (SNP), a NO donor, induce a membrane hyperpolarization and outward current through large conductances calcium-activated potassium ($BK_{ca}$) channels in substantia gelatinosa (SG) neurons. In this study, patch clamp recording in spinal slices was used to investigate the sources of $Ca^{2+}$ that induces $Ca^{2+}$-activated potassium currents. Application of SNP induced a membrane hyperpolarization, which was significantly inhibited by hemoglobin and 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (c-PTIO), NO scavengers. SNP-induced hyperpolarization was decreased in the presence of charybdotoxin, a selective $BK_{Ca}$ channel blocker. In addition, SNP-induced response was significantly blocked by pretreatment of thapsigargin which can remove $Ca^{2+}$ in endoplasmic reticulum, and decreased by pretreatment of dentrolene, a ryanodine receptors (RyR) blocker. These data suggested that NO induces a membrane hyperpolarization through $BK_{ca}$ channels, which are activated by intracellular $Ca^{2+}$ increase via activation of RyR of $Ca^{2+}$ stores.

Autonomic and Skeletal Muscle Response to Non-electrical Cutaneous Stimulation (비 전기적 자극에 대한 자율신경계통과 골격근의 반응)

  • Kim, In-Hyun
    • The Korean Journal of Pain
    • /
    • v.7 no.2
    • /
    • pp.307-313
    • /
    • 1994
  • Cutaneous stimulation has had a long history as a method of pain control. While there is general agreement that modern techniques such as electrical stimulation and massage often provide relief from acute pain and may in some cases significantly affect chronic pain, the mechanism by which these techniques affect pain remain unclear. Significant attention has been focused on the effects of stimulation on the autonomic nervous system(ANS) along with the increasing evidence of important ANS modulation of nociceptive activity throughout the pain pathway. However, inconsistent results on the presence and direction of ANS changes from cutaneous stimulation characterize the recent literature. The present study investigated a non-electrical cutaneous stimulation device, the Dermapoints massage roller, as well as an active placebo massage. The results indicate that the Dermapoints massage roller has both general effects associated with simple skin stimulation (such as increased skin temperature), as well as specific effects from increased stimulation by the tooth design of the roller. These specific effects include decreased muscle tension (at least for some muscle sites) and increased sympathetic activation. The results are consistent with a model of activation of Pacinian receptors as a possible mechanism for the antinociceptive properties of cutaneous stimulation.

  • PDF

Neural circuit remodeling and structural plasticity in the cortex during chronic pain

  • Kim, Woojin;Kim, Sun Kwang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.

The New Rome IV Criteria for Functional Gastrointestinal Disorders in Infants and Toddlers

  • Zeevenhooven, Judith;Koppen, Ilan J.N.;Benninga, Marc A.
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.20 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • Functional gastrointestinal disorders (FGIDs) are common worldwide and cover a wide range of disorders attributable to the gastrointestinal tract that cannot be explained by structural or biochemical abnormalities. The diagnosis of these disorders relies on the symptom-based Rome criteria. In 2016 the Rome criteria were revised for infants/toddlers and for children and adolescents. In this review, we discuss the novel Rome IV criteria for infants and toddlers. The criteria for infant colic were drastically changed, whereas only minor changes were made for regurgitation, cyclic vomiting syndrome, functional diarrhea, infant dyschezia and functional constipation. In addition to this, the new Rome IV discusses underlying mechanisms of pain in infants and toddlers, including the neurodevelopment of nociceptive and pain pathways, the various factors that are involved in pain experience, and methods of pain assessment in infants and toddlers is essential for the clinician who encounters functional pain in this age group. Overall, the Rome IV criteria have become more distinctive for all disorders in order to improve the process of diagnosing pediatric FGIDs.

Inhibition of Endothelial Cell-dependent Serotonin-induced Contraction of ${\beta}-endorphin$ and Increment of Plasma ${\beta}-endorphin$ of Silver Spike Point Low Frequency Electrical Stimulation (${\beta}-Endorphin$의 내피세포의존성-세로토닌 유도-근 수축 억제와 저빈도-주파수 은침점전자극의 혈장 ${\beta}-endorphin$ 증가)

  • Choi Young-Duk;Lee Joon-Hee;Kim Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.3
    • /
    • pp.22-31
    • /
    • 2004
  • The purpose of this study was to demonstrate the effects of silver spike point (SSP) low frequency electrical stimulation on plasma ${\beta}-endorphin$ activities measured by radio- immunoassay from normal volunteer and the effects of ${\beta}-endorphin$ on 5-hydroxytryptamine (5-HT, serotonin)-induced contraction investigated by isometric tension methode in rats. The current of 3 Hz continue type, but not 100 Hz continue type, of SSP low frequency electrical stimulation significantly increased in plasma ${\beta}-endorphin$ from normal volunteer. The endothelial cell-dependent 5-HT-induced contractions were inhibited by ${\beta}-endorphin$ $1{\mu}M$. These results suggest that the ${\beta}-endorphin$ regulates nociceptive-like substance, such as 5-HT, in part and that the SSP low frequency electrical stimulation, specifically current of low frequency of 3 Hz continue type, significantly increases plasma ${\beta}-endorphin$ from normal volunteer.

  • PDF

Immunohistochemical localization of neurotensin in the midbrain periaqueductal gray of the Korean native goat (한국재래산양 중뇌 중심회색질의 neurotensin 분포에 관한 면역조직화학적 연구)

  • Lee, In-se;Lee, Heungshik S.;Yi, Seong-joon
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.3
    • /
    • pp.361-368
    • /
    • 1993
  • The midbrain periaqueductal gray is a midline structure that encircles the mesencephalic aqueduct of midbrain and plays an important role in anaglgesia and modulation of nociceptive input to the central nervous system. It has been demonstrated that the periaqueductal gray contains several neuropeptides including neurotensin, which has been postulated antinociceptive effect to the periaqueductal gray. The present study was performed to provide immunohistochemical localization of neurotensin of midbrain periaqueductal gray in the Korean native goat by using immunohistochemical method. Neurotensin-like immunireactive neurons were localized throughout the midbrain periaqueductal gray, although more immunoreactive neurons were present in the middle and caudal parts of periaquductal gray than the rostral part. Dense neurotensin-like immunoreactive neurons were much more numerous in the ventral lateral division of the mid- and caudal periaqueductal grays. Neurotensin-like immunoreactive neurons were much larger and more prominent near the external margin of the gray than in the juxta-aqueductal region. Neurotensin-like immunoreactive fibers were observed as short processes extending from immunoreactive cells and some small immunoreactive puncta and varicose-like fibers were also seen.

  • PDF

Antinociceptive and Antiinflammatory Effect of a Diterpene Isolated from the Aerial Part of Siegesbeckia pubescens

  • Park, Hee-Juhn
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.660-664
    • /
    • 2006
  • The aerial part of Siegesbeckia pubescens (Compositae) has been used to treat rheumatoid arthritis and hypertension in the Oriental medicine. This crude drug has been used without process (SP-0) or with three times-process of steaming and drying (SP-3) or the nine times of that process (SP-9). To search for the antinociceptive anti-inflammatory components from this crude drug, activity-directed fractionation was performed on this crude drug. Since the $CHCl_3$ extract was shown to have a more potent effect than other extracts, it was subjected to silica gel & ODS column chromatography to yield two diterpene compounds (1). Compound 1 was structurally identified as ent-16 (H, 17-hydroxykauran-19-oic acid, which were tentatively named siegeskaurolic acid A. A main diterpene, siegeskaurolic acid A was tested for the antiiflammatory antinociceptive effects using both hot plate- and writhing anti-nociceptive assays and carrageenan-induced anti-inflammatory assays in mice and rats. Pretreatment with siegeskaurolic acid A (20 and 30mg/kg) significantly reduced the stretching episodes, action time of mice and carrageenan-induced edema. These results support that siegeskaurolic acid is a main diterpene responsible for antinociceptive and antiiflammatory action of S. pubescens. In addition, the assays on SP-0, SP-3 and SP-9 produced the experimental results that SP-9 had more significant effects than other two crude drugs. These results suggest that the processing on the original plant may lead to the higher pharmacological effect.

Effect of Capsaicin on the Formalin-induced Fos-like Immunoreactivity in the Spinal Cord of Rat (Formalin에 의해 흰쥐의 척수에서 유도된 Fos-like Immunoreactivity에 미치는 Capsaicin의 영향)

  • 곽지연;오우택
    • YAKHAK HOEJI
    • /
    • v.43 no.3
    • /
    • pp.404-410
    • /
    • 1999
  • Administration of capsaicin produces acute pain and subsequent long-lasting antinociception. The antinociceptive action site of capsaicin is primarily small afferent nerve fibers. However, the effect of capsaicin on the neural activity of dorsal horn neurons are not well understood. The goal of the present experiment was to study the action of capsaicin on activity of dorsal horn neurons using c-fos immunoreactivity in the spinal cord. Intradermal injection of formalin in the hindpaw produced inflammation in the foot pad and increased the number of cells exhibiting Fos-like immunoreactivity (FLI) in the dorsal horn of the spinal cord, suggesting the hyperalgesia because of the apparent inflammation. Intradermal injection of capsaicin prior to formalin injection significantly reduced the number of cells exhibiting FLI induced by formalin and increased the paw-withdrawal latency, suggesting the hypoalgesic effect of capsaicin. Coadministeration with capsaicin of capsazepine and ruthenium red, antagonists of capsaicin receptor reversed the reduction of formalin-induced FLI by capsaicin. he antagonists also partially antagonized the antinociceptive effect of capsaicin in the paw-withdrawal test. These results further suggest that capsaicin reduces prsponses of dorsal horn neurons to the inflammatory nociceptive stimuli in the periphery. Thus, the reduction of FLI subserves the neural mechanisms underlying analgesia produced by capsaicin.

  • PDF

Acute Phase Protein Lipocalin-2 Is Associated with Formalin-induced Nociception and Pathological Pain

  • Jha, Mithilesh Kumar;Jeon, Sangmin;Jin, Myungwon;Lee, Won-Ha;Suk, Kyoungho
    • IMMUNE NETWORK
    • /
    • v.13 no.6
    • /
    • pp.289-294
    • /
    • 2013
  • Lipocalin-2 (LCN2) is an acute-phase protein induced by injury, infection, or other inflammatory stimuli. LCN2 binds small hydrophobic ligands and interacts with cell surface receptor to regulate diverse cellular processes. The role of LCN2 as a chemokine inducer in the central nervous system (CNS) has been previously reported. Based on the previous participation of LCN2 in neuroinflammation, we investigated the role of LCN2 in formalin-induced nociception and pathological pain. Formalin-induced nociceptive behaviors (licking/biting) and spinal microglial activation were significantly reduced in the second or late phase of the formalin test in Lcn2 knockout mice. Likewise, antibody-mediated neutralization of spinal LCN2 attenuated the mechanical hypersensitivity induced by peripheral nerve injury in mice. Taken together, our results suggest that LCN2 can be therapeutically targeted, presumably for both prevention and reversal of acute inflammatory pain as well as pathological pain.

Anti-nociceptive Effect of Bee Venom on Capsaicin or Bradykinin-induced Pain (Capsaicin이나 Bradykinin으로 유발된 통증에 대한 봉독의 억제 효과)

  • Yang, Chang-Yeol;Song, Ho-Sueb
    • Journal of Acupuncture Research
    • /
    • v.24 no.2
    • /
    • pp.39-49
    • /
    • 2007
  • 목적 : 봉독으로 유발된 통각수용의 강도와 봉독으로 나타나는 항통각수용(통각억제성)의 강도를 쥐의 포르말린 테스트를 통해 상호관련됨을 확인하고 capsaicin과 bradykinin으로 통증 유발된 쥐의 자발적인 통증행동(핥기횟수측정; LN), 꼬리경타시험(TFL)과 열판시험(HPL)을 통해 봉독의 항통각수용(통각억제)작용을 재확인 하고자 하였다. 방법 : 쥐의 뒷다리에 통증유도 물질인 Capsaicin 또는 Bradykinin을 20${\mu}l$를 주사하여 동통을 유발하고 자발적 통증행동인 핥기횟수측정(LN), 꼬리경타기간(TFL)과 열판 위에서의 온도자극에 쥐가 반응하는 시간을 측정(HPL)하는 실험을 봉독을 주입하거나, 몰핀을 주입하거나, 아무것도 주입하지 않고 통증유발만 시킨 이후에 각각 시행하였다. 결과: 1. Capsaicin 또는 Bradykinin으로 동통유발 후 LN은 두드러증가를 보임, HPL은 감소를 TFL은 두드러진 감소를 나타내었다. 2. 봉독이나 몰핀 주입 30분 후에 Capsaicin으로 동통유발 이후 LN은 봉독과 몰핀에서 모두 현격한 감소를, HPL은 봉침은 현격한 증가를, 몰핀에서는 감소를, TFL은 봉침과 몰핀에서 모두 현격한 증가를 나타내었다. 3 봉독과 몰핀주입 30분후에 Bradykinin으로 동통유발 이후 LN은 봉독은 증가 몰핀은 현격한 감소를, HPL은 봉침은 증가 몰핀에서는 현격한 증가를, TFL은 봉침과 볼핀에서 모두 증가를 나타내었다. 결론 : 봉독은 Capsaicin 또는 Bradykinin으로 동통유발된 통각수용행동을 감소시키는 결과를 나타내었는데 이것은 기존의 연구결과들에서의 봉독의 항통각수용(통각억제성)의 효과를 입증하였고 봉약침은 염증의 개선이나 암과 관련된 동통에 유효한 방법임을 시사하는 것이다.

  • PDF