DOI QR코드

DOI QR Code

Neural circuit remodeling and structural plasticity in the cortex during chronic pain

  • Kim, Woojin (Department of Physiology, College of Korean Medicine, Kyung Hee University) ;
  • Kim, Sun Kwang (Department of Physiology, College of Korean Medicine, Kyung Hee University)
  • Received : 2015.07.15
  • Accepted : 2015.10.05
  • Published : 2016.01.01

Abstract

Damage in the periphery or spinal cord induces maladaptive plastic changes along the somatosensory nervous system from the periphery to the cortex, often leading to chronic pain. Although the role of neural circuit remodeling and structural synaptic plasticity in the 'pain matrix' cortices in chronic pain has been thought as a secondary epiphenomenon to altered nociceptive signaling in the spinal cord, progress in whole brain imaging studies on human patients and animal models has suggested a possibility that plastic changes in cortical neural circuits may actively contribute to chronic pain symptoms. Furthermore, recent development in two-photon microscopy and fluorescence labeling techniques have enabled us to longitudinally trace the structural and functional changes in local circuits, single neurons and even individual synapses in the brain of living animals. These technical advances has started to reveal that cortical structural remodeling following tissue or nerve damage could rapidly occur within days, which are temporally correlated with functional plasticity of cortical circuits as well as the development and maintenance of chronic pain behavior, thereby modifying the previous concept that it takes much longer periods (e.g. months or years). In this review, we discuss the relation of neural circuit plasticity in the 'pain matrix' cortices, such as the anterior cingulate cortex, prefrontal cortex and primary somatosensory cortex, with chronic pain. We also introduce how to apply long-term in vivo two-photon imaging approaches for the study of pathophysiological mechanisms of chronic pain.

Keywords

References

  1. Kuner R. Central mechanisms of pathological pain. Nat Med. 2010;16:1258-1266. https://doi.org/10.1038/nm.2231
  2. Saab CY. Pain-related changes in the brain: diagnostic and therapeutic potentials. Trends Neurosci. 2012;35:629-637. https://doi.org/10.1016/j.tins.2012.06.002
  3. Banic B, Petersen-Felix S, Andersen OK, Radanov BP, Villiger PM, Arendt-Nielsen L, Curatolo M. Evidence for spinal cord hypersensitivity in chronic pain after whiplash injury and in fibromyalgia. Pain. 2004;107:7-15. https://doi.org/10.1016/j.pain.2003.05.001
  4. Woolf CJ, Salter MW. Neuronal plasticity: increasing the gain in pain. Science. 2000;288:1765-1769. https://doi.org/10.1126/science.288.5472.1765
  5. Apkarian AV, Baliki MN, Geha PY. Towards a theory of chronic pain. Prog Neurobiol. 2009;87:81-97. https://doi.org/10.1016/j.pneurobio.2008.09.018
  6. Chklovskii DB, Mel BW, Svoboda K. Cortical rewiring and information storage. Nature. 2004;431:782-788. https://doi.org/10.1038/nature03012
  7. Seminowicz DA, Laferriere AL, Millecamps M, Yu JS, Coderre TJ, Bushnell MC. MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage. 2009;47:1007-1014. https://doi.org/10.1016/j.neuroimage.2009.05.068
  8. May A. Chronic pain may change the structure of the brain. Pain. 2008;137:7-15. https://doi.org/10.1016/j.pain.2008.02.034
  9. Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26:696-705. https://doi.org/10.1016/j.tins.2003.09.017
  10. Proudlock F, Spike RC, Todd AJ. Immunocytochemical study of somatostatin, neurotensin, GABA, and glycine in rat spinal dorsal horn. J Comp Neurol. 1993;327:289-297. https://doi.org/10.1002/cne.903270210
  11. Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature. 1992;355:75-78. https://doi.org/10.1038/355075a0
  12. West SJ, Bannister K, Dickenson AH, Bennett DL. Circuitry and plasticity of the dorsal horn--toward a better understanding of neuropathic pain. Neuroscience. 2015;300:254-275. https://doi.org/10.1016/j.neuroscience.2015.05.020
  13. Zhang Y, Chen Y, Liedtke W, Wang F. Lack of evidence for ectopic sprouting of genetically labeled $A{\beta}$ touch afferents in inflammatory and neuropathic trigeminal pain. Mol Pain. 2015;11:18.
  14. Holtmaat A, Svoboda K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat Rev Neurosci. 2009;10:647-658. https://doi.org/10.1038/nrn2699
  15. Tan AM, Chang YW, Zhao P, Hains BC, Waxman SG. Rac1-regulated dendritic spine remodeling contributes to neuropathic pain after peripheral nerve injury. Exp Neurol. 2011;232:222-233. https://doi.org/10.1016/j.expneurol.2011.08.028
  16. Tan AM, Samad OA, Fischer TZ, Zhao P, Persson AK, Waxman SG. Maladaptive dendritic spine remodeling contributes to diabetic neuropathic pain. J Neurosci. 2012;32:6795-6807. https://doi.org/10.1523/JNEUROSCI.1017-12.2012
  17. Tan AM, Choi JS, Waxman SG, Hains BC. Dendritic spine remodeling after spinal cord injury alters neuronal signal processing. J Neurophysiol. 2009;102:2396-2409. https://doi.org/10.1152/jn.00095.2009
  18. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24:10410-10415. https://doi.org/10.1523/JNEUROSCI.2541-04.2004
  19. Kuchinad A, Schweinhardt P, Seminowicz DA, Wood PB, Chizh BA, Bushnell MC. Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci. 2007;27:4004-4007. https://doi.org/10.1523/JNEUROSCI.0098-07.2007
  20. Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron. 2008;60:570-581. https://doi.org/10.1016/j.neuron.2008.08.022
  21. Schmidt-Wilcke T, Leinisch E, Straube A, Kampfe N, Draganski B, Diener HC, Bogdahn U, May A. Gray matter decrease in patients with chronic tension type headache. Neurology. 2005;65:1483-1486. https://doi.org/10.1212/01.wnl.0000183067.94400.80
  22. Eto K, Wake H, Watanabe M, Ishibashi H, Noda M, Yanagawa Y, Nabekura J. Inter-regional contribution of enhanced activity of the primary somatosensory cortex to the anterior cingulate cortex accelerates chronic pain behavior. J Neurosci. 2011;31:7631-7636. https://doi.org/10.1523/JNEUROSCI.0946-11.2011
  23. Kim SK, Eto K, Nabekura J. Synaptic structure and function in the mouse somatosensory cortex during chronic pain: in vivo two-photon imaging. Neural Plast. 2012;2012:640259.
  24. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;9:463-484. https://doi.org/10.1016/j.ejpain.2004.11.001
  25. Lithwick A, Lev S, Binshtok AM. Chronic pain-related remodeling of cerebral cortex - 'pain memory': a possible target for treatment of chronic pain. Pain Manag. 2013;3:35-45. https://doi.org/10.2217/pmt.12.74
  26. Takeuchi Y, Yamasaki M, Nagumo Y, Imoto K, Watanabe M, Miyata M. Rewiring of afferent fibers in the somatosensory thalamus of mice caused by peripheral sensory nerve transection. J Neurosci. 2012;32:6917-6930. https://doi.org/10.1523/JNEUROSCI.5008-11.2012
  27. Draganski B, Moser T, Lummel N, Ganssbauer S, Bogdahn U, Haas F, May A. Decrease of thalamic gray matter following limb amputation. Neuroimage. 2006;31:951-957. https://doi.org/10.1016/j.neuroimage.2006.01.018
  28. MacIver K, Lloyd DM, Kelly S, Roberts N, Nurmikko T. Phantom limb pain, cortical reorganization and the therapeutic effect of mental imagery. Brain. 2008;131:2181-2191. https://doi.org/10.1093/brain/awn124
  29. Craig AD. How do you feel--now? The anterior insula and human awareness. Nat Rev Neurosci. 2009;10:59-70. https://doi.org/10.1038/nrn2555
  30. Baliki MN, Baria AT, Apkarian AV. The cortical rhythms of chronic back pain. J Neurosci. 2011;31:13981-13990. https://doi.org/10.1523/JNEUROSCI.1984-11.2011
  31. Kim BG, Dai HN, McAtee M, Vicini S, Bregman BS. Remodeling of synaptic structures in the motor cortex following spinal cord injury. Exp Neurol. 2006;198:401-415. https://doi.org/10.1016/j.expneurol.2005.12.010
  32. Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6:13-34. https://doi.org/10.1038/sj.mp.4000812
  33. Manning BH, Merin NM, Meng ID, Amaral DG. Reduction in opioid- and cannabinoid-induced antinociception in rhesus monkeys after bilateral lesions of the amygdaloid complex. J Neurosci. 2001;21:8238-8246. https://doi.org/10.1523/JNEUROSCI.21-20-08238.2001
  34. Rhudy JL, Meagher MW. Negative affect: effects on an evaluative measure of human pain. Pain. 2003;104:617-626. https://doi.org/10.1016/S0304-3959(03)00119-2
  35. Tajerian M, Leu D, Zou Y, Sahbaie P, Li W, Khan H, Hsu V, Kingery W, Huang TT, Becerra L, Clark JD. Brain neuroplastic changes accompany anxiety and memory deficits in a model of complex regional pain syndrome. Anesthesiology. 2014;121:852-865. https://doi.org/10.1097/ALN.0000000000000403
  36. Goncalves L, Silva R, Pinto-Ribeiro F, Pego JM, Bessa JM, Pertovaara A, Sousa N, Almeida A. Neuropathic pain is associated with depressive behaviour and induces neuroplasticity in the amygdala of the rat. Exp Neurol. 2008;213:48-56. https://doi.org/10.1016/j.expneurol.2008.04.043
  37. Liu MG, Chen J. Preclinical research on pain comorbidity with affective disorders and cognitive deficits: Challenges and perspectives. Prog Neurobiol. 2014;116:13-32. https://doi.org/10.1016/j.pneurobio.2014.01.003
  38. Zhuo M. Cortical excitation and chronic pain. Trends Neurosci. 2008;31:199-207. https://doi.org/10.1016/j.tins.2008.01.003
  39. Xu H, Wu LJ, Wang H, Zhang X, Vadakkan KI, Kim SS, Steenland HW, Zhuo M. Presynaptic and postsynaptic amplifications of neuropathic pain in the anterior cingulate cortex. J Neurosci. 2008;28:7445-7453. https://doi.org/10.1523/JNEUROSCI.1812-08.2008
  40. Blom SM, Pfister JP, Santello M, Senn W, Nevian T. Nerve injury-induced neuropathic pain causes disinhibition of the anterior cingulate cortex. J Neurosci. 2014;34:5754-5764. https://doi.org/10.1523/JNEUROSCI.3667-13.2014
  41. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, Davidson RJ, Kosslyn SM, Rose RM, Cohen JD. Placebo-induced changes in FMRI in the anticipation and experience of pain. Science. 2004;303:1162-1167. https://doi.org/10.1126/science.1093065
  42. Duric V, McCarson KE. Persistent pain produces stress-like alterations in hippocampal neurogenesis and gene expression. J Pain. 2006;7:544-555. https://doi.org/10.1016/j.jpain.2006.01.458
  43. Zimmerman ME, Pan JW, Hetherington HP, Lipton ML, Baigi K, Lipton RB. Hippocampal correlates of pain in healthy elderly adults: a pilot study. Neurology. 2009;73:1567-1570. https://doi.org/10.1212/WNL.0b013e3181c0d454
  44. Terada M, Kuzumaki N, Hareyama N, Imai S, Niikura K, Narita M, Yamazaki M, Suzuki T, Narita M. Suppression of enriched environment-induced neurogenesis in a rodent model of neuropathic pain. Neurosci Lett. 2008;440:314-318. https://doi.org/10.1016/j.neulet.2008.05.078
  45. Ren WJ, Liu Y, Zhou LJ, Li W, Zhong Y, Pang RP, Xin WJ, Wei XH, Wang J, Zhu HQ, Wu CY, Qin ZH, Liu G, Liu XG. Peripheral nerve injury leads to working memory deficits and dysfunction of the hippocampus by upregulation of TNF-${\alpha}$ in rodents. Neuropsychop harmacology. 2011;36:979-992. https://doi.org/10.1038/npp.2010.236
  46. Mutso AA, Radzicki D, Baliki MN, Huang L, Banisadr G, Centeno MV, Radulovic J, Martina M, Miller RJ, Apkarian AV. Abnormalities in hippocampal functioning with persistent pain. J Neurosci. 2012;32:5747-5756. https://doi.org/10.1523/JNEUROSCI.0587-12.2012
  47. Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:4259-4264. https://doi.org/10.1073/pnas.071043098
  48. Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci U S A. 2009;106:2423-2428. https://doi.org/10.1073/pnas.0809897106
  49. Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1-32. https://doi.org/10.1146/annurev.neuro.051508.135531
  50. Seifert F, Maihofner C. Central mechanisms of experimental and chronic neuropathic pain: findings from functional imaging studies. Cell Mol Life Sci. 2009;66:375-390. https://doi.org/10.1007/s00018-008-8428-0
  51. Florence SL, Taub HB, Kaas JH. Large-scale sprouting of cortical connections after peripheral injury in adult macaque monkeys. Science. 1998;282:1117-1121. https://doi.org/10.1126/science.282.5391.1117
  52. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol. 1984;224:591-605. https://doi.org/10.1002/cne.902240408
  53. Trachtenberg JT, Chen BE, Knott GW, Feng G, Sanes JR, Welker E, Svoboda K. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature. 2002;420:788-794. https://doi.org/10.1038/nature01273
  54. De Paola V, Holtmaat A, Knott G, Song S, Wilbrecht L, Caroni P, Svoboda K. Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron. 2006;49:861-875. https://doi.org/10.1016/j.neuron.2006.02.017
  55. Bhatt DH, Zhang S, Gan WB. Dendritic spine dynamics. Annu Rev Physiol. 2009;71:261-282. https://doi.org/10.1146/annurev.physiol.010908.163140
  56. Kim SK, Nabekura J. Rapid synaptic remodeling in the adult somatosensory cortex following peripheral nerve injury and its association with neuropathic pain. J Neurosci. 2011;31:5477-5482. https://doi.org/10.1523/JNEUROSCI.0328-11.2011
  57. Kim SK, Kato G, Ishikawa T, Nabekura J. Phase-specific plasticity of synaptic structures in the somatosensory cortex of living mice during neuropathic pain. Mol Pain. 2011;7:87.
  58. Nemoto T. Living cell functions and morphology revealed by two-photon microscopy in intact neural and secretory organs. Mol Cells. 2008;26:113-120.
  59. Zipfel WR, Williams RM, Webb WW. Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol. 2003;21:1369-1377. https://doi.org/10.1038/nbt899
  60. Helmchen F, Denk W. Deep tissue two-photon microscopy. Nat Methods. 2005;2:932-940. https://doi.org/10.1038/nmeth818
  61. Feng G, Mellor RH, Bernstein M, Keller-Peck C, Nguyen QT, Wallace M, Nerbonne JM, Lichtman JW, Sanes JR. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 2000;28:41-51. https://doi.org/10.1016/S0896-6273(00)00084-2

Cited by

  1. Non-invasive Brain Stimulation, a Tool to Revert Maladaptive Plasticity in Neuropathic Pain vol.10, pp.None, 2016, https://doi.org/10.3389/fnhum.2016.00376
  2. Microglial-induced apoptosis is potentially responsible for hyperalgesia variations during CFA-induced inflammation vol.28, pp.2, 2016, https://doi.org/10.1007/s10787-019-00623-3
  3. Reflex memory theory of acquired involuntary motor and sensory disorders vol.57, pp.1, 2016, https://doi.org/10.1186/s41983-021-00307-2