• Title/Summary/Keyword: nitrogen dynamics

Search Result 208, Processing Time 0.029 seconds

Effects of Traffic Volume and Air Quality on the Characteristic of Urban Park Soil (교통량과 대기질이 도시 공원 토양 특성에 미치는 영향)

  • Joo, Sunyoung;Lee, Hyunjin;Jeon, Juhui;Seo, Inhye;Yoo, Gayoung
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • This study aims to understand how mobile and stationary air pollution sources affect the air quality and soil properties in urban parks. We selected three sites of urban parks in Seoul as follows: Ha-neul Park in Mapo-gu (Site_M), Ill-won Eco-Park in Gangnam-gu (Site_G), and Yangjae Citizen's Forest in Seocho-gu (Site_Y), and compared the results of each site's traffic volume, air quality concentration, and soil analysis. Traffic volume was high in Site_M, followed by Site_G and Y; Site_M and G were closer to the resource recovery facility than Site_Y. Hence, we hypothesized that PM and NO2 concentrations in the atmosphere were higher in Site_M than Site_G and Y, causing different soil nitrogen content among sites due to different atmospheric deposition. Consistent with our hypothesis, the concentrations of PM2.5 and NO2 were higher in Site_M and G than Site_Y, while Site_Y had higher PM10 than other sites. The soil NO3- contents showed no significant difference among three sites, whereas the soil NH4+ content was extremely high in Site_Y. This high content of soil NH4+ is thought to be due to acidification from excessive fertilization. Lower soil pH of Site_Y further supported the evidence of heavy fertilization in this site. Overall nitrogen dynamics implies that soil nitrogen status is more influenced by park management such as fertilization rather than atmospheric deposition. Despite of lower soil NH4+ content of Site_M and G than Y, vegetation vitality looked similar among three sites. This indirectly indicates that excessive fertilizer input in urban park management needs to be reconsidered. This study showed that even if the air quality was different due to mobile and stationary sources, it did not directly affect the soil nitrogen nutrient status of the adjacent urban park.

Characteristics of Indigenous Rhizobium to Korean Soils III. Symbiotic Dynamics of Bradyrhizobium japonicum YCK Strains According to Their Competitive Conditions for Nodulation (우리나라 토착근류균(土着根瘤菌)의 제(諸) 특성(特性) 연구(硏究) III. 수종(數種) Bradyrhizobium japonicum YCK 균주(菌株)의 경합여부(競合與否)에 따른 공생효과 변이(變異))

  • Kang, Ui-Gum;Jung, Yeun-Tae;Ha, Ho-Sung;Somasegaran, Padma;Bohlool, B. Ben
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.265-270
    • /
    • 1993
  • The symbiotic dynamics of Bradyrhiwbium japonicum YCK strains indigenous to Korean soils were investigated accordingly to their competitive conditions for nodulation. For this experiment the single strain inoculants of YCK strains and the mixed inoculants of one YCK strain and one USDA strain were applied to Korean Jangbaekkong and American Clark soybeans at mollisol soils(Torroxic Haplustoll, pH 6.8). The results were summarized as follows : 1. The symbiotic effectiveness of B. japonicum YCK strains was increased on the average of nitrogen accumulation by mixing with USDA strains, especially with strain USDA 110. 2. The effectiveness of each mixed inoculant was affected by soybean cultivar. 3. YCK strains occupied on the average of 83 and 86 % of the nodules against strain USDA 110 on Jangbaekkong and Clark soybeans, respectitvely. 4. The most effective strain among three YCK strains was strain YCK 213 as a single inoculant and was strain YCK 141 as a mixed inoculant with USDA strains. 5. The mixed inoculants of YCK strains and strain USDA 123 showed antagonism for nodulation.

  • PDF

Effects of Ruminal Infusion of Garlic Oil on Fermentation Dynamics, Fatty Acid Profile and Abundance of Bacteria Involved in Biohydrogenation in Rumen of Goats

  • Zhu, Zhi;Mao, Shengyong;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.962-970
    • /
    • 2012
  • This study aimed to investigate the effects of ruminal infusion of garlic oil (GO) on fermentation dynamics, fatty acid (FA) profile, and abundance of bacteria involved in biohydrogenation in the rumen. Six wethers fitted with ruminal fistula were assigned to two groups for cross-over design with a 14-d interval. Each 30-d experimental period consisted of a 27-d adaptation and a 3-d sample collection. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents collected before (0 h) and at 2, 4, 6, 8, and 10 h after morning feeding were used for fermentation analysis, and 0 h samples were further used for FA determination and DNA extraction. Garlic oil had no influence on dry matter intakes of concentrate and hay. During ruminal fermentation, GO had no effects on total VFA concentration and individual VFA molar proportions, whereas GO increased the concentrations of ammonia nitrogen and microbial crude protein (p<0.05). Compared with control, GO group took a longer time for total VFA concentration and propionate molar proportion to reach their respective maxima after morning feeding. The ratio of acetate to propionate in control reduced sharply after morning feeding, whereas it remained relatively stable in GO group. Fatty acid analysis showed that GO reduced saturated FA proportion (p<0.05), while increasing the proportions of C18, t11-18:1 (TVA), c9,t11-conjugated linoleic acid (c9,t11-CLA), t10,c12-CLA, and polyunsaturated FA (p<0.05). The values of TVA/(c9,t11-CLA+TVA) and C18:0/(TVA+C18:0) were reduced by GO (p<0.05). Real-time PCR showed that GO tended to reduce Butyrivibrio proteoclasticus abundance (p = 0.058), whereas GO had no effect on total abundance of the Butyrivibrio group bacteria. A low correlation was found between B. proteoclasticus abundance and C18:0/(TVA+C18:0) (p = 0.910). The changes of fermentation over time suggested a role of GO in delaying the fermentation process and maintaining a relatively modest change of ruminal environment. The inhibitory effects of GO on the final step of biohydrogenation may be related to its antibacterial activity against B. proteoclasticus and other unknown bacteria involved.

Dynamics of Phytoplankton Community in Lake Juam, Korea (주암호 식물플랑크톤 군집 동태-와편모조 Peridinium, bipes를 중심으로)

  • Lee, Ki-Ho;Baik, Soon-Ki;Kim, Baik-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.249-260
    • /
    • 2005
  • Dynamics of phytoplankton community were monthly examined at two sites in Lake Juam from January to December 2003. One site is located near the Dam, an intake tower, where obtain a drinking water resource, the other site is located in the shallow region, Mundeok-bridge, the upstream or effluent part of lake. During the study, there made little the differences in physicochemical factors between two sites, but numbers of species and standing crops of phytoplankton differ remarkably. Totally, 41% of green algae and 35.8% of diatoms were comprised of total phytoplankton species, while 46.3% of dinoflagellates and 27.6% of cyanobacteria contributed in total standing crops of Phytoplankton community. Cyanobacterium Microcystis aeruginora and diatom Fragilaria crotonensis dominated the Dam site during a warm season, while dinoflagellates Peridinium bipes and Asterionella formosa were at the shallow region during a cold season, respectively. According to the CCA analysis, dissolved oxygen, chemical oxygen demand and total phosphate strongly affected the growth of P. bipes with low water temperature. In addition, the increment of total nitrogen and water temperature affected biomass of a cyanobacterium M. aeruginosa. Collectively, it may suggest that the majority of annual primary production of Lake Juam is covered by two dominant species Peridinium bipes in cold season and Microcystis aeruginosa in warm season.

Effects of fallen blossoms of Prunus spp. on nutrient dynamics in an artificial pond ecosystem (벚나무류 낙화가 인공 연못생태계의 물질순환에 미치는 영향)

  • Lee, Bo Eun;Jeon, Young Joon;Jang, You Lim;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.203-208
    • /
    • 2015
  • To identify the effect of fallen cherry blossom on the artificial pond ecosystem, microcosm experiment was conducted into the aquatic decomposition of Prunus species petals. Petals were put in $1mm^2$ mesh nylon litter bags. For treatment group, one flower litter bag was placed into each pot microcosm ($27{\times}20{\times}8cm^3$) filled with influent water from the artificial pond, whereas control group microcosm contained pond water only. Decomposition time were set differently (4, 8, 12, 16 days) among treatment groups. At the end of experiment, most petals were decomposed and only 32.3% of initial dry weight remained with the decay rate (k) of $7.06{\times}10^{-2}day^{-1}$. $NO_3-N$ concentration of microcosm water decreased sharply from 1.90 mg/L at first to 0.02 mg/L, whereas $NH_4-N$ concentration increased from 0.03 mg/L to 2.85 mg/L continually. $PO_4-P$ concentration was 0.03 mg/L at first and increased to 2.39 mg/L by decomposition. Therefore, available phosphorus seems to have leached with higher rate than nitrogen from the petals litter. Increase about 0.02 mg/L in $PO_4-P$ concentration could be estimated in artificial pond from the calculation on the total quantity of fallen blossoms. This result suggests that available phosphorus from the decomposed Prunus petals could cause eutrophication in the artificial pond.

Characteristics of Nitro-nutrients and Phytoplankton Dynamics in the Yeongsan River after Weir Construction (보 건설 이후 영산강 보 구간에서의 질소계열 영양염류 및 식물플랑크톤 동태)

  • Seo, Kyung-Ae;Na, Jeong-Eun;Ryu, Hui-Seong;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.423-430
    • /
    • 2018
  • Insomuch as it is important to manage water quality, from the perspective of water management, it is essential to understand the effect of the weirs on water quality and phytoplankton dynamics in various regions. The purpose of this study is to investigate the characteristics of nitro-nutrients, as well as occurrences and succession patterns of phytoplankton, in the river sections of the two weirs in the Yeongsan River for the five years (from 2012 to 2016) after the weir construction. In respect to this data, the average water temperature measured at the representative point in the section of the Seungchon Weir ($17.1^{\circ}C$) was higher than that of the Juksan Weir ($16.6^{\circ}C$) by comparison. By way of an analysis of this data, it was found that the water quality variables such as, organic matter, nitrogen nutrients and phosphorus nutrients were improved gradually during the period, but the degree of the improvement differs as noted and measured between the weirs. Under the circumstances, it is especially noted that the $NH_3-N$ concentration was higher for the point of the Seungchon Weir (2.204 mg/L) than that of the Juksan Weir (1.157 mg/L). This indicates that effluent as seen from sewage treatment plants and hydrological feature near the densely population area, could be the main cause for the incidence of water pollution in the upstream section of the Seungchon Weir. Additionally, the phytoplankton analysis showed that a relative abundance of diatoms and green algae were 56.9 % and 25.8 % respectively. However, it is noted that the cyanobacteria was measured lower as 10.7 %. Also, in the study sites cell density and occurrence frequency of cyanobacteria were relatively lower than compared to the same measurements noted in other rivers.

CFD Analysis on the Internal Reaction in the SNCR System (SNCR 시스템 내부의 물질 반응에 관한 전산해석적 연구)

  • Koo, Seongmo;Yoo, Kyung-Seun;Chang, Hyuksang
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.63-73
    • /
    • 2019
  • Numerical analysis was done to evaluate the chemical reaction and the reduction rate inside of selective non-catalytic reduction to denitrification in combustion process. The $NO_X$ reduction in selective non-catalytic reduction is converted to not only nitrogen but also nitrous oxide. Simultaneous $NO_X$ reduction and nitrous oxide generation suppressing is required in selective non-catalytic reduction because nitrous oxide influences the global warming as a greenhouse gas. The current study was performed compare the computational analysis in the same temperature and amount of NaOH, and in comparison with the previous research experiments and confirmed the reliability of the computational fluid dynamics. Additionally, controlling the addition amount of NaOH to predict the $NO_X$ reduction efficiency and nitrous oxide production. Numerical analysis was done to check the mass fraction of each material in the measurement point at the end of selective non-catalytic reduction. Experimental Value and simulation value by numerical analysis showed an error of up to 18.9% was confirmed that a generally well predicted. and it was confirmed that the widened temperature range of more than 70% $NO_X$ removal rate is increased when the addition amount of NaOH. So, large and frequent changes of the reaction temperature waste incineration facilities are expected to be effective.

Supplementing Maize or Soybean Hulls to Cattle Fed Rice Straw:Intake, Apparent Digestion, In situ Disappearance and Ruminal Dynamics

  • Von, Nguyen Tien;St. Louis, David G.;Orr, Adam I.;Rude, Brian J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.807-817
    • /
    • 2008
  • Steers with ad libitum access to rice straw were assigned to four diets to evaluate the effects of maize or soybean hull supplementation on intake, in vivo digestibility, ruminal pH, VFA, ammonia-nitrogen ($NH_3-N$) and in situ ruminal disappearance of feed nutrients by cattle consuming rice straw. Supplement treatments were: no supplement (RS); soybean meal at 0.127% BW (SBM); cracked maize at 0.415% BW plus 0.044% BW soybean meal (MAIZE); or soybean hulls at 0.415% BW plus 0.044% BW soybean meal (HULLS). The MAIZE and HULLS diets were formulated to provide approximately 4 MJ of $NE_m$ per kg of diet. Rice straw DMI was not affected (p = 0.34) by supplement. Apparent dry matter (DM) digestibility was greater (p<0.001) for MAIZE and HULLS (56.6 and 60.0%, respectively) than for steers consuming SBM or RS (51.8 and 44.4%, respectively). Apparent NDF digestibility was greater (p<0.0004) for HULLS than MAIZE (61.7 vs. 58.0%, respectively) and apparent ADF digestibility was greater (p<0.0008) for HULLS than MAIZE (61.1 vs. 49.2%, respectively). There was no difference in apparent hemicellulose digestibility (p = 0.43). Analysis of ruminal fluid collected 0, 2, 4, 6, and 8 h post-feeding revealed ammonia-nitrogen was greatest (p<0.05) for steers on SBM and HULLS diets at 2 h (24.08 and 22.57 mg/dl, respectively) and total volatile fatty acids was greatest (p<0.05) for HULLS at 4 h (230 mM/L). In situ disappearance, measured at 0, 2, 4, 6, 8, 16 and 24 h, indicated that SBM, MAIZE and HULLS tended to enhance the digestibility of DM and fiber components of rice straw. In situ disappearance of rice straw DM was greatest for SBM and/or HULLS from 4 to 24 h (p = 0.03). Rice straw NDF and ADF disappearance was enhanced by supplementation from 16 to 24 h (p<0.02). Rice straw DM, NDF and ADF disappearances at 24 h were similar for MAIZE and HULLS treatments. When feeding cattle rice straw diets, energy and protein-based supplements are essential. This study showed that fiber-based supplements are just as, if not more, effective as starch-based supplements in rice straw utilization. This study shows that soybean hulls, in spite of their high fiber content, are as efficient as maize for supplementing rice straw primarily because fiber in soybean hulls is highly digestible as shown by in vivo digestibility and in situ disappearance.

Internal Flow Analysis of Urea-SCR System for Passenger Cars Considering Actual Driving Conditions (운전 조건을 고려한 승용차용 요소첨가 선택적 촉매환원장치의 내부 유동 해석에 관한 연구)

  • Moon, Seong Joon;Jo, Nak Won;Oh, Se Doo;Lee, Ho Kil;Park, Kyoung Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.127-138
    • /
    • 2016
  • Diesel vehicles should be equipped with urea-selective catalytic reduction(SCR) system as a high-performance catalyst, in order to reduce harmful nitrogen oxide emissions. In this study, a three-dimensional Eulerian-Lagrangian CFD analysis was used to numerically predict the multiphase flow characteristics of the urea-SCR system, coupled with the chemical reactions of the system's transport phenomena. Then, the numerical spray structure was modified by comparing the results with the measured values from spray visualization, such as the injection velocity, penentration length, spray radius, and sauter mean diameter. In addition, the analysis results were verified by comparison with the removal efficiency of the nitrogen oxide emissions during engine and chassis tests, resulting in accuracy of the relative error of less than 5%. Finally, a verified CFD analysis was used to calculate the interanl flow of the urea-SCR system, thereby analyzing the characteristics of pressure drop and velocity increase, and predicting the uniformity index and overdistribution positions of ammonia.

Assessment of Compost Maturity on Their Different Stages with Microbial and Biochemical Mass Dynamics (미생물 및 생화학적 질량역적분석에 의한 퇴비화단계별 부숙도 평가)

  • Suresh, Arumuganainar;Choi, Hong Lim;Yao, Hongqing;Zhu, Kun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.36-47
    • /
    • 2009
  • Microbial and related biochemical mass of composts are important for optimization of its process and end-products. This study was carried out to assess the specific microbial and related biochemical mass which could be used as an indicator for compost maturity during composting stages. The samples from five compost plants were collected at three stages (Initial, Thermophilic and Mature) and analyzed for total aerobic bacteria (TAB), Coliforms, Escherichia coli, Actinomycetes and fungi. Significantly, the coliforms and E.coli counts decreased during the thermophilic stage and were completely eliminated during mature stage. However, the other microbial mass were completely eliminated during mature stage. Which disclosed that Coliforms and E.coli communities can be used as compost maturity indicator. Interestingly, the microbial biomass carbon and nitrogen ratio (MBC/MBN) were decreased a little during the thermophilic stage due to the decreasing number of coliforms, Ecoli and fungi, while the ratio increased during the mature stage due to increasing fungal and aerobic bacterial counts. In addition the heavy metals were shown strong negative correlation with Actenomycetes. This study provides insight to the evaluation of compost maturity as well as the quality by the metal-microbial interactions.

  • PDF