DOI QR코드

DOI QR Code

SNCR 시스템 내부의 물질 반응에 관한 전산해석적 연구

CFD Analysis on the Internal Reaction in the SNCR System

  • Koo, Seongmo (Department of Environmental Engineering, Yeungnam University) ;
  • Yoo, Kyung-Seun (Department of Environmental Engineering, Kwangwoon University) ;
  • Chang, Hyuksang (Department of Environmental Engineering, Yeungnam University)
  • 투고 : 2018.11.08
  • 심사 : 2018.12.17
  • 발행 : 2019.03.30

초록

연소공정 내에서 질소산화물 배출을 저감하는 선택적 무촉매 환원장치 내부의 화학반응 및 저감효율에 대한 수치해석이 실행되었다. 선택적 무촉매 환원장치에서 저감된 질소산화물은 질소뿐만 아니라 아산화질소로도 전환된다. 아산화질소는 온실가스로써 지구온난화에 영향을 끼치기 때문에 선택적 무촉매 환원장치 내의 질소산화물 제어와 동시에 아산화질소 생성제어가 요구되어진다. 본 연구에서는 선행연구에서 실행된 실험과 온도조건과 가성소다의 첨가량이 동일한 선택적 무촉매 환원장치 내의 전산해석을 실시하고 비교하여 전산해석의 신뢰성을 확인하고, 가성소다 첨가량을 추가적으로 조절하여 질소산화물의 저감 효율과 아산화질소 생성량을 예측하였다. 전산해석은 후단의 측정점을 설정하여 각 물질의 질량분율을 확인하였다. 세부적으로는 측정점에서 유동방향에 수직한 면을 설정하여 온도 조건과 가성소다 첨가량에 따른 각 물질의 평균 질량분율을 비교하였다. 실험값과 전산해석에 의한 모사값은 최대 18.9%의 오차를 보이며 대체적으로 잘 예측됨을 확인하였으며 가성소다 첨가량을 증가시켰을 땐 70% 이상의 제거율의 온도 범위가 넓어지는 것을 확인하였다. 따라서 반응온도의 낙차가 크고 잦은 폐기물 소각시설 등에서 효과적일 것으로 예상된다.

Numerical analysis was done to evaluate the chemical reaction and the reduction rate inside of selective non-catalytic reduction to denitrification in combustion process. The $NO_X$ reduction in selective non-catalytic reduction is converted to not only nitrogen but also nitrous oxide. Simultaneous $NO_X$ reduction and nitrous oxide generation suppressing is required in selective non-catalytic reduction because nitrous oxide influences the global warming as a greenhouse gas. The current study was performed compare the computational analysis in the same temperature and amount of NaOH, and in comparison with the previous research experiments and confirmed the reliability of the computational fluid dynamics. Additionally, controlling the addition amount of NaOH to predict the $NO_X$ reduction efficiency and nitrous oxide production. Numerical analysis was done to check the mass fraction of each material in the measurement point at the end of selective non-catalytic reduction. Experimental Value and simulation value by numerical analysis showed an error of up to 18.9% was confirmed that a generally well predicted. and it was confirmed that the widened temperature range of more than 70% $NO_X$ removal rate is increased when the addition amount of NaOH. So, large and frequent changes of the reaction temperature waste incineration facilities are expected to be effective.

키워드

CJGSB2_2019_v25n1_63_f0001.png 이미지

Figure 1. Schematic of the SNCR reactor.

CJGSB2_2019_v25n1_63_f0002.png 이미지

Figure 2. Location of nozzle tips.

CJGSB2_2019_v25n1_63_f0003.png 이미지

Figure 3. Mesh of the SNCR reactor.

CJGSB2_2019_v25n1_63_f0004.png 이미지

Figure 4. Velocity distribution near the nozzle.

CJGSB2_2019_v25n1_63_f0005.png 이미지

Figure 5. Temperature distribution near the nozzle.

CJGSB2_2019_v25n1_63_f0006.png 이미지

Figure 6. NO concentration distribution near the nozzle.

CJGSB2_2019_v25n1_63_f0007.png 이미지

Figure 7. Reduction of NOX with respect to temperature at urea only.

CJGSB2_2019_v25n1_63_f0008.png 이미지

Figure 8. Reduction of NOX with respect to temperature at urea and NaOH 1%.

CJGSB2_2019_v25n1_63_f0009.png 이미지

Figure 9. Reduction of NOX with respect to temperature and NaOH percentage.

CJGSB2_2019_v25n1_63_f0010.png 이미지

Figure 10. NH3 slip with respect to temperature at urea only.

CJGSB2_2019_v25n1_63_f0011.png 이미지

Figure 11. Generation of N2O with respect to temperature at urea only.

CJGSB2_2019_v25n1_63_f0012.png 이미지

Figure 12. Generation of N2O with respect to temperature at urea and NaOH 1%.

Table 1. Boundary condition at main inlet

CJGSB2_2019_v25n1_63_t0001.png 이미지

Table 2. Boundary condition of atomizing air at nozzle tip

CJGSB2_2019_v25n1_63_t0002.png 이미지

Table 3. Boundary condition of 40% urea solution at nozzle tip

CJGSB2_2019_v25n1_63_t0003.png 이미지

Table 4. Boundary condition of heat loss at each wall

CJGSB2_2019_v25n1_63_t0004.png 이미지

Table 5. Boundary condition of 40% urea solution and NaOH 1% at Nozzle tip

CJGSB2_2019_v25n1_63_t0005.png 이미지

Table 6. Reaction list

CJGSB2_2019_v25n1_63_t0006.png 이미지

Table 7. Comparison of NOX reduction percentage between experimental and CFD at two different NaOH concentration and five different heat loss

CJGSB2_2019_v25n1_63_t0007.png 이미지

참고문헌

  1. WHO (World Health Organization) "Air Quality Guidelines for Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide," World Health Organization, 2006.
  2. Perez-Ramirez, J., Kapeteijn, F., Schöffel, K., and Moulijn, J. A., "Formation and Control of $N_2O$ in Nitric Acid Production: Where Do we Stand Today?," Appl. Catal. B Environ., 44(2), 117-151 (2003). https://doi.org/10.1016/S0926-3373(03)00026-2
  3. Topsoe, N. Y., Topsoe, H., and Dumesic, J. A., "Vanadia/Titania Catalysts for Selective Cataytic Reduction (SCR) of Nitric-Oxid by Ammonia: I. Combined Temperature-Programmed in situ FTIR and On-line Mass-Spectroscopy Studies," J. Catal., 151(1), 226-240 (1995). https://doi.org/10.1006/jcat.1995.1024
  4. Leckner, B., Karisson, M., Dam-Johansen, K., Weinell, C. E., Kilpinen, P., and Hupa, M., "Influence of Additives on Selective Non-catalytic Reduction of NO with NH3 in Circulating Fluidized Bed Boilers," Ind. & Eng. Chem. Res., 30(11), 2396-2404 (1991). https://doi.org/10.1021/ie00059a006
  5. Busca, G., Lietti, L., Ramis, G., and Berti, F., "Chemical and Mechanistic Aspects of Selective Catalytic Reduction of $NO_X$ by Ammonia over Catalysts," A Rev. Appl. Catal. B Environ., 18(1), 1-36 (1988).
  6. Long, R. Q., Yang, R. T., and Chang, R., "Low Temperature Selective Catalytic Reduction of NO and $NH_3$ over Fe-, Mn based catalysts," Chem. Commun., 7(5), 452-453 (2002). https://doi.org/10.1039/b111382h
  7. Jodal, M., Nielsen, C., Hulgaard, T., and Dam-Johansen, K. "Pilot-Scale Experiments with Ammonia and Urea as Reductants in Selective Non-Catalytic Reduction of Nitric Oxide," Symposium (International) on Combustion, 23(1), 237-243 (1991).
  8. Mahmoudi, S., Baeyens, J., and Seville, J. P., "NOX Formation and Selectivee Non-Catalytic Reduction (SNCR) in a Fluidized Bed Combustor of Biomass," Biomass and Bioenergy, 34(9), 1393-1409 (2010). https://doi.org/10.1016/j.biombioe.2010.04.013
  9. Jacob, M., Bjarne, M., Kim, C., and Thomas, H. C., "Life Cycle Assesment of Selective Non-Catalytic Reduction (SNCR) of Nitrous Oxides in a Full-Scale Municipal Solid Waste Incinerator," Waste Mange., 31(6), 1184-1193 (2011). https://doi.org/10.1016/j.wasman.2010.12.019
  10. Lu, Z. M., and Lu, J. D., "Influences of $O_2$ Concentration on NO Reduction and $N_2O$ Formation in Thermal DeNOX Process," Combustion and Flame, 156(6), 1303-1315 (2009). https://doi.org/10.1016/j.combustflame.2009.01.021
  11. Patankar, S. V., Numerical Heat Transfer and Fluid Flow, 1st ed., McGraw-Hill, New York, Chap3. 1980.
  12. ANSYS, ANSYS Fluent User's Guide, ANSYS Inc. 2013.
  13. Nguyen, T. D., Lim, Y. I., Kim, S. J., Eom, W. H., and Yoo, K. S., "Experiment and Computational Fluid Dynamics (CFD) Simulation of Urea-Based Selective Noncatalytic Reduction (SNCR) in a Pilot-Scale Flow Reactor," Energy and Fuels, 22(6), 3864-3876 (2008). https://doi.org/10.1021/ef8004652
  14. ANSYS, ANSYS Fluent Theory Guide, ANSYS Inc. 2013.
  15. Wark, K., Warner, C. F., and Davis, W. T., Air Pollution: Its Origin and Control, 3rd ed., Prentice Hall, New York, Chap 5. 1998.
  16. Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M., and Tsuji, Y., Multiphase Flow with Droplets and Particles, 2nd ed., CRC Press, Boca Ration, USA, Chap 8. pp 235-258 (2011).
  17. Tayyeb Javed, M., Irfana, N., and Gibbs, B. M., "Control of Combustion-generated Nitrogen Oxides by Selective Noncatalytic Reduction," J. Environ. Manage., 83(3), 251-289 (2007). https://doi.org/10.1016/j.jenvman.2006.03.006
  18. Cremer, M. A., Montgomery, C. J., Wang, D. H., Heap, M. P., and Chen J. Y., "Development and Implementation of Reduced Chemistry for Computational Fluid Dynamics Modeling of Selective Non-Catalytic Reduction," Proc. Combust. Inst., 28, 2427-2434(2000).
  19. Han, X., Wei, X., Schnell, U., and Hein, K. R. G., "Detailed Modeling of Hybrid Reburn/SNCR Processes for $NO_X$ Reduction in Coal-fired Furnaces," Combust. and Flame, 132(3), 374-386 (2003). https://doi.org/10.1016/S0010-2180(02)00481-9
  20. Gran, I. R., and Magnussen, B. F., "A Numerical Study of a Bluff-Body Stabilized Diffusion Flame. Part 1. Influence of Turbulence Modeling and Boundary Conditions," Combust. Sci. and Technol., 119, 191-201(1996). https://doi.org/10.1080/00102209608951999
  21. Brouwer, J., Heap, M. P., Pershing, D. W., and Smith, P. J., "A Model for Prediction of Selective Non-catalytic Reduction of Nitrogen Oxides by Ammonia, Urea, and Cyanuric Acid with Mixing Limitations in the Presence of CO," Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Italy, 2117-2124 (1996).
  22. Zamansky, V. M., Lissianski, V. V., Maly, P. M., Ho, L., Rusli, D., and Gardiner, W. C., "Reactions of Sodium Species in the Promoted SNCR Process," Combust. and Flame, 117(4), 821-831 (1999). https://doi.org/10.1016/S0010-2180(98)00127-8
  23. Wendt, J. O. L., Linak, W. P., Groff, P. W., and Srivastava, R. K., "Hybrid SNCR-SCR Technologies for NOx Control: Modeling and Experiment," AIChE J., 47(11), 2603-2617 (2001). https://doi.org/10.1002/aic.690471123