Browse > Article
http://dx.doi.org/10.5713/ajas.2011.11442

Effects of Ruminal Infusion of Garlic Oil on Fermentation Dynamics, Fatty Acid Profile and Abundance of Bacteria Involved in Biohydrogenation in Rumen of Goats  

Zhu, Zhi (College of Animal Science and Technology, Nanjing Agricultural University)
Mao, Shengyong (College of Animal Science and Technology, Nanjing Agricultural University)
Zhu, Weiyun (College of Animal Science and Technology, Nanjing Agricultural University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.25, no.7, 2012 , pp. 962-970 More about this Journal
Abstract
This study aimed to investigate the effects of ruminal infusion of garlic oil (GO) on fermentation dynamics, fatty acid (FA) profile, and abundance of bacteria involved in biohydrogenation in the rumen. Six wethers fitted with ruminal fistula were assigned to two groups for cross-over design with a 14-d interval. Each 30-d experimental period consisted of a 27-d adaptation and a 3-d sample collection. Goats were fed a basal diet without (control) or with GO ruminal infusion (0.8 g/d). Ruminal contents collected before (0 h) and at 2, 4, 6, 8, and 10 h after morning feeding were used for fermentation analysis, and 0 h samples were further used for FA determination and DNA extraction. Garlic oil had no influence on dry matter intakes of concentrate and hay. During ruminal fermentation, GO had no effects on total VFA concentration and individual VFA molar proportions, whereas GO increased the concentrations of ammonia nitrogen and microbial crude protein (p<0.05). Compared with control, GO group took a longer time for total VFA concentration and propionate molar proportion to reach their respective maxima after morning feeding. The ratio of acetate to propionate in control reduced sharply after morning feeding, whereas it remained relatively stable in GO group. Fatty acid analysis showed that GO reduced saturated FA proportion (p<0.05), while increasing the proportions of C18, t11-18:1 (TVA), c9,t11-conjugated linoleic acid (c9,t11-CLA), t10,c12-CLA, and polyunsaturated FA (p<0.05). The values of TVA/(c9,t11-CLA+TVA) and C18:0/(TVA+C18:0) were reduced by GO (p<0.05). Real-time PCR showed that GO tended to reduce Butyrivibrio proteoclasticus abundance (p = 0.058), whereas GO had no effect on total abundance of the Butyrivibrio group bacteria. A low correlation was found between B. proteoclasticus abundance and C18:0/(TVA+C18:0) (p = 0.910). The changes of fermentation over time suggested a role of GO in delaying the fermentation process and maintaining a relatively modest change of ruminal environment. The inhibitory effects of GO on the final step of biohydrogenation may be related to its antibacterial activity against B. proteoclasticus and other unknown bacteria involved.
Keywords
Garlic Oil; Conjugated Linoleic Acid; Biohydrogenation; Butyrivibrio; Goat;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wanapat, M., P. Khejornsart, P. Pakdee and S. Wanapat. 2008. Effect of supplementation of garlic powder on rumen ecology and digestibility of nutrients in ruminants. J. Sci. Food Agric. 88:2231-2237.   DOI   ScienceOn
2 Kim, E. J., S. A. Huws, M. R. F. Lee, J. D. Wood, S. M. Muetzel, R. J. Wallace and N. D. Scollan. 2008. Fish oil increases the duodenal flow of long chain polyunsaturated fatty acids and trans-11 18:1 and decreases 18:0 in steers via changes in the rumen bacterial community. J. Nutr. 138:889-896.
3 Kim, E. J., R. Sanderson, M. S. Dhanoa and R. J. Dewhurst. 2005. Fatty acid profiles associated with microbial colonization of freshly ingested grass and rumen biohydrogenation. J. Dairy Sci. 88:3220-3230.   DOI   ScienceOn
4 Lou, Q., J. Xu, Y. Wang, C. Xue and Z. Sun. 2010. Analysis of fatty acid composition of Ulva pertusa Kjellm by gas chromatography-mass spectrometry. Chin. J. Chromatogr. 28:668-672.   DOI   ScienceOn
5 Lourenço, M., E. Ramos-Morales and R. J. Wallace. 2010. The role of microbes in rumen lipolysis and biohydrogenation and their manipulation. Animal 4:1008-1023.   DOI   ScienceOn
6 Lu, J., K. Huang, N. Zang, J. Li, M. Zhang and Y. Wang. 2005. Analysis of fatty acid in tissues of Penaeus vannamei cultured in sea- and fresh-waters by ultrasonic extraction-capillary gas chromatography. Chin. J. Chromatogr. 23:193-195.
7 Maia, M. R. G., L. C. Chaudhary, C. S. Bestwick, A. J. Richardson, N. McKain, T. R. Larson, I. A. Graham and R. J. Wallace. 2010. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 10:52-61.   DOI   ScienceOn
8 Makkar, H. P. S., O. P. Sharma, R. K. Dawra and S. S. Negi. 1982. Simple determination of microbial protein in rumen liquor. J. Dairy Sci. 65:2170-2173.   DOI
9 Moon, C. D., D. M. Pacheco, W. J. Kelly, S. C. Leahy, D. Li, J. Kopečný and G. T. Attwood. 2008. Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrateproducing ruminal bacterium. Int. J. Syst. Evol. Microbiol. 58:2041-2045.   DOI   ScienceOn
10 Ding, L. and A. Yokota. 2004. Proposals of Curvibacter gracilis gen. nov., sp. nov. and Herbaspirillum putei sp. nov. for bacterial strains isolated from well water and reclassification of [Pseudomonas] huttiensis, [Pseudomonas] lanceolata, [Aquaspirillum] delicatum and [Aquaspirillum] autotrophicum as Herbaspirillum huttiense comb. nov., Curvibacter lanceolatus comb. nov., Curvibacter delicatus comb. nov. and Herbaspirillum autotrophicum comb. nov. Int. J. Syst. Evol. Microbiol. 54:2223-2230.   DOI   ScienceOn
11 Folch, J., M. Lees and G. Sloane-Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226:497-509.
12 Harfoot, C. G. and G. P. Hazlewood. 1997. Lipid metabolism in the rumen. In: The Rumen Microbial Ecosystem, 2nd Ed. (Ed. P. N. Hobson and C. S. Stewart). Chapman & Hall, London, UK. pp. 382-426.
13 Huws, S. A., E. J. Kim, M. R. F. Lee, M. B. Scott, J. K. S. Tweed, E. Pinloche, R. J. Wallace and N. D. Scollan. 2011. As yet uncultured bacteria phylogenetically classified as Prevotella, Lachnospiraceae incertae sedis and unclassified Bacteroidales, Clostridiales and Ruminococcaceae may play a predominant role in ruminal biohydrogenation. Environ. Microbiol. 13:1500-1512.   DOI   ScienceOn
14 Huws, S. A., M. R. F. Lee, S. M. Muetzel, M. B. Scott, R. J. Wallace and N. D. Scollan. 2010. Forage type and fish oil cause shifts in rumen bacterial diversity. FEMS Microbiol. Ecol. 73:396-407.
15 Iciek, M., I. Kwiecien and L. Wlodek. 2009. Biological properties of garlic and garlic-derived organosulfur compounds. Environ. Mol. Mutagen. 50:247-265.   DOI   ScienceOn
16 Busquet, M., S. Calsamiglia, A. Ferret, M. D. Carro and C. Kamel. 2005b. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 88:4393-4404.   DOI   ScienceOn
17 Jenkins, T. C., R. J. Wallace, P. J. Moate and E. E. Mosley. 2008. Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 86:397-412.
18 Kemp, P., R. White and D. Lander. 1975. The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J. Gen. Microbiol. 90:100-114.   DOI
19 Busquet, M., S. Calsamiglia, A. Ferret, P. W. Cardozo and C. Kamel. 2005a. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 88:2508-2516.   DOI   ScienceOn
20 Busquet, M., S. Calsamiglia, A. Ferret and C. Kamel. 2006. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89:761-771.   DOI   ScienceOn
21 Cardozo, P. W., S. Calsamiglia, A. Ferret and C. Kamel. 2004. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J. Anim. Sci. 82:3230-3236.
22 Cardozo, P. W., S. Calsamiglia, A. Ferret and C. Kamel. 2005. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 83:2572-2579.
23 Castillejos, L., S. Calsamiglia, A. Ferret and R. Losa. 2007. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 132:186-201.   DOI   ScienceOn
24 Boeckaert, C., B. Vlaeminck, V. Fievez, L. Maignien, J. Dijkstra and N. Boon. 2008. Accumulation of trans C18:1 fatty acids in the rumen after dietary algal supplementation is associated with changes in the Butyrivibrio community. Appl. Environ. Microbiol. 74:6923-6930.   DOI   ScienceOn
25 Chaves, A. V., K. Stanford, M. E. R. Dugan, L. L. Gibson, T. A. McAllister, F. Van Herk and C. Benchaar. 2008. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 117:215-224.   DOI   ScienceOn
26 AOAC. 1990. Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia, USA.
27 Benchaar, C., S. Calsamiglia, A. V. Chaves, G. R. Fraser, D. Colombatto, T. A. McAllister and K. A. Beauchemin. 2008. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Technol. 145:209-228.   DOI   ScienceOn
28 Zhu, Z. 2011. Effects of garlic oil on ruminal biohydrogenation, milk fatty acid profile and lipogenesis-related gene expression in mammary gland of goats. Ph.D. Thesis, Nanjing Agricultural University, Nanjing, Jiangsu.
29 Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 63:64-75.   DOI   ScienceOn
30 Yang, W. Z., C. Benchaar, B. N. Ametaj, A. V. Chaves, M. L. He and T. A. McAllister. 2007. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 90:5671-5681.   DOI   ScienceOn
31 Zoetendal, E. G., A. D. L. Akkermans and W. M. D. Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:3854-3859.
32 Reuter, H. D., H. P. Koch and L. D. Lawson. 1996. Therapeutic effects and applications of garlic and its preparations. In: Garlic: the science and therapeutic application of Allium sativum L and related species (Ed. H. P. Koch and L. D. Lawson). Williams & Wilkins, Baltimore. pp. 135-212.
33 Paillard, D., N. McKain, M. T. Rincon, K. J. Shingfield, D. I. Givens and R. J. Wallace. 2007. Quantification of ruminal Clostridium proteoclasticum by real-time PCR using a molecular beacon approach. J. Appl. Microbiol. 103:1251-1261.   DOI   ScienceOn
34 Polan, C., J. McNeill and S. Tove. 1964. Biohydrogenation of unsaturated fatty acids by rumen bacteria. J. Bacteriol. 88:1056-1064.
35 Qin, W. L. 1982. Determination of rumen volatile fatty acids by means of gas chromatography. J. Nanjing Agricultural College. 4:110-116.
36 SAS Institute. 2000. SAS User's guide: Statistics. Version 8.01. SAS Institute Inc., Cary, North Carolina.
37 Shingfield, K. J., L. Bernard, C. Leroux and Y. Chilliard. 2010. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 4:1140-1166.   DOI   ScienceOn
38 Van Soest, P. J. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.   DOI   ScienceOn
39 Wallace, R. J. 2004. Antimicrobial properties of plant secondary metabolites. Proc. Nutr. Soc. 63:621-629.   DOI   ScienceOn
40 Wanapat, M., K. Boonnop, C. Promkot and A. Cherdthong. 2011. Effects of alternative protein sources on rumen microbes. Maejo Int. J. Sci. Technol. 5:13-23.