• 제목/요약/키워드: nitrogen catabolite repression

검색결과 11건 처리시간 0.032초

Fermentation of MR-387A and H, Novel Aminopeptidase M Inhibitors by Streptomyces sp. SL-387 : Carbon and Nitrogen Catabolite Repression of Inhibitor Formation

  • Kho, Yung-Hee;Chung, Myung-Chul;Chun, Hyo-Kon;Lee, Choong-Hwan;Lee, Ho-Jae;Kim, Su-Il
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권3호
    • /
    • pp.158-162
    • /
    • 1995
  • The effect of carbon and nitrogen sources on the production of novel aminopeptidase M inhibitors MR-387A and B by Streptomyces sp. SL-387 has been studied. High D-glucose and ammonia concentrations (5$\%$ and 1$\%$, respectively) exerted a negative influence on the inhibitor formation. The suppressive effect of glucose on the inhibitor formation is probably caused by an effect of medium pH rather than that of cyclic AMP. To establish the optimum conditions for inhibitor overproduction, various nitrogen sources and ammonium ion-trapping agents were examined. The use of ammonia slow-releasing nitrogen sources such as soybean meal and fish meal, or ammonium ion-trapping agents such as kaoline, celite, and natural zeolite achieved the enhancement of inhibitor production. These results also indicate that inhibitor formation is affected by ammonium ion repression.

  • PDF

세라티아 배양에 의한 세라티오펩티다아제의 생산에 관한 연구 (Studies on the Production of Serratiopeptidase from Serratia Culture)

  • 노현수;박호진;이병룡
    • 한국미생물·생명공학회지
    • /
    • 제20권2호
    • /
    • pp.207-212
    • /
    • 1992
  • 세라티아 균주의 배양으로부터 소염제로 사용되는 세라티오펩티다아제의 생산에 관한 연구를 수행하였다. 여러가지 탄소원, 질소원 및 유도제가 효소의 생산에 미치는 영향을 조사하였는데, 탄소원은 효소의 생산이나 세포성장에 좋지 못한 기질이었으며, 특히 citrate의 경우 균체성장량은 포도당과 거의 동일하였으나, 세라오펩티다제의 생산에 저해효과가 있음이 밝혀졌다. 세라티오펩티다아제는 아미노산인 leucine을 첨가해 주었을 때 그 생산되는 양이 크게 향상되었으며 leucine의 최적 농도는 0.03였다.

  • PDF

Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in Candida glabrata

  • Santos, Francisco J. Perez-de los;Garcia-Ortega, Luis Fernando;Robledo-Marquez, Karina;Guzman-Moreno, Jesus;Riego-Ruiz, Lina
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권5호
    • /
    • pp.659-666
    • /
    • 2021
  • After Candida albicans, Candida glabrata is one of the most common fungal species associated with candidemia in nosocomial infections. Rapid acquisition of nutrients from the host is important for the survival of pathogens which possess the metabolic flexibility to assimilate different carbon and nitrogen compounds. In Saccharomyces cerevisiae, nitrogen assimilation is controlled through a mechanism known as Nitrogen Catabolite Repression (NCR). NCR is coordinated by the action of four GATA factors; two positive regulators, Gat1 and Gln3, and two negative regulators, Gzf3 and Dal80. A mechanism in C. glabrata similar to NCR in S. cerevisiae has not been broadly studied. We previously showed that in C. glabrata, Gln3, and not Gat1, has a major role in nitrogen assimilation as opposed to what has been observed in S. cerevisiae in which both factors regulate NCR-sensitive genes. Here, we expand the knowledge about the role of Gln3 from C. glabrata through the transcriptional analysis of BG14 and gln3Δ strains. Approximately, 53.5% of the detected genes were differentially expressed (DEG). From these DEG, amino acid metabolism and ABC transporters were two of the most enriched KEGG categories in our analysis (Up-DEG and Down-DEG, respectively). Furthermore, a positive role of Gln3 in AAA assimilation was described, as was its role in the transcriptional regulation of ARO8. Finally, an unexpected negative role of Gln3 in the gene regulation of ABC transporters CDR1 and CDR2 and its associated transcriptional regulator PDR1 was found. This observation was confirmed by a decreased susceptibility of the gln3Δ strain to fluconazole.

Pseudomonas aeruginosa에 의핸 생합성되는 향진균성물질(PAFS)의 생산성 증가 및 생산균주의 배양생리학적 특성 연구 (Enhanced Production of Antifungal Substance(PAFS) Bioxynthesized by Pseudomonas aeruginosa and Examination of Its Physiological Characteristics in Fermentation)

  • 박선옥;송성기;윤권상;정연호;이상종;정용섭;전계택
    • 한국미생물·생명공학회지
    • /
    • 제28권6호
    • /
    • pp.341-348
    • /
    • 2000
  • Selection of high producer strain, optimization of production medium and cultivation in bioreactor system were carried out in order to produce an antifungal substance, PAFS in large amounts which sources and 41 kinds of nitrogen sources, a synthetic medium consisting of fructose(70 g/1) and ammonium sulfate (10g/l) and a complex medium including galactose(30g/l), fructose(20g/l) and cottonseed flour(35g/l) were determined as opti-mized media for PAFS production. In bioreactor studies examining physiological characteristics of the pro- ducer microorganism with the complex medium, typical pattern of diauxic growth was observed as demonstrated by the result that fructose was not used before almost exhaustion on readily utilizable carbon source, galactose. When galactose was supplemented additionally during the fermentation period. PAFS pro-ductivity did no increases any more, indicating that large portion of the added galactose was used for cell growth instead of biosynthesis of the secondary metabolite. It was deduced that PAFS production could be enhananced by employing fed-batch operation in order to overcome the apparent phenomenon of catabolite repression and /or inhibition.

  • PDF

알칼리성 Xylanase를 생산하는 Bacillus alcalojnhilus AX2000의 분리와 효소 생산 (Isolation of Bacillus alcalophilus AX2000 Producing Alkaling Xylanase and Its Enzyme Production)

  • 박영서;김태영
    • 한국미생물·생명공학회지
    • /
    • 제31권2호
    • /
    • pp.157-164
    • /
    • 2003
  • 알칼리성 xylanase를 생산하는 균주를 토양으로부터 분리한 후 동정을 실시한 결과 Bacillus alcaiophilus으로 판명되었다. B. alcalophilus AX2000으로 명명한 본 균주는 pH 10.5에서 생육이 가장 좋았으며 효소활성도 가장 높았고 배지 중에 탄소원과 질소원으로서 0.5%(w/v) birchwood xylan과 0.5%(w/v) polypeptone/yeast extract를 각각 사용하였을 경우에 최대의 xylanase생산성을 나타내었다. Xylanase의 생합성근 glucose에 의한 catabolite repression을 받았으며 고농도의 xylose에 의해 효소의 생합성이 저해되었다. 조효소의 최적활성은 pH 10과 $50^{\circ}C$에서 나타났으며, pH 5에서 11까지의 넓은 pH범위에서 활성이 안정하게 유지되었고 효소의 열 안정성은 20~$60^{\circ}C$에서 30분간 처리시 90%이상의 잔존활성을 나타내었다.

Xylanase를 생산하는 내열성 Bacillus속 균주의 분리와 효소생산 조건 (isolation of Xylanase-producing Thermo-tolerant Bacillus sp. and Its Enzyme Production)

  • 박영서;강미영;장학길;박귀근;강종백;이정기;오태광
    • 한국미생물·생명공학회지
    • /
    • 제27권5호
    • /
    • pp.370-377
    • /
    • 1999
  • Thermo-tolerant bacterium producing the xylanase was isolated from soil and identified as Bacillus pumilus. This strain, named Bacillus pumilus TX703, was able to grow ad produce xylanase at the culture temperature of 5$0^{\circ}C$. The maximum xylanase production was obtained when 1%(w/v) birchwood xylan and 1% (w/v) soytone were used as carbon source and nitrogen source, respectively. The biosynthesis of xylanase was under the catabolite repression induced by glucose in the culture medium, and it was completely inhibited in the presence of 0.2% (w/v) glucose. The maximum activity of xylanase was observed from pH8.0 to 9.0 and from 50 to 6$0^{\circ}C$ and the enzyme was highly heat-stable, whose activity remained was over 50% at 8$0^{\circ}C$, and was quite stable from pH5.0 to 10.0.

  • PDF

Isolation of High Yielding Alkaline Protease Mutants of Vibrio metschnikovii Strain RH530 and Detergency Properties of Enzyme

  • Chung, So-Sun;Shin, Yong-Uk;Kim, Hee-Jin;Jin, Ghee-Hong;Rho, Hyune-Mo;Lee, Hyune-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권3호
    • /
    • pp.349-354
    • /
    • 2000
  • Abstract A facultative alkalophilic gram-negative Vibrio metschnikovii strain RH530, isolated from the wastewater, produced several alkaline proteases (VAP) including six alkaline serine proteases and a metalloprotease. From this strain, high yielding YAP mutants were isolated by NTG treatment. The isolated mutant KS1 showed nine times more activity than the wild-type after optimization of the culture media. The production was regulated by catabolite repression when glucose was added to the medium. The effects of several organic nitrogen sources on the production of the YAP were investigated to avoid catabolite repression. The combination of 4% wheat gluten meal (WGM), 1.5% cotton seed flour (eSF), and 5% soybean meal (SBM) resulted in the best production when supplemented with 1% NaCl. The YAP showed a resistance to surfactants such as $sodium-{\alpha}-olefin$ sulfonate (AOS), polyoxy ethylene oxide (POE), and sodium dodecyl sulfate (SDS), yet not to linear alkylbenzene sulfonate (LAS). However, the activity of the YAP was restored completely when incubated with LAS in the presence of POE or $Na_2SO_4$. The YAP was stable in a liquid laundry detergent containing 6.6% SLES (sodium lauryl ether sulfate), 6.6% LAS, 19.8% POE, and stabilizing agents for more than two weeks at $40^{\circ}C$, but the stability was sharply decreased even after 1 day when incubated at $60^{\circ}C$. A washing performance test with the YAP exhibited it to be a good washing power by showing 51 % and 60% activity at $25^{\circ}C{\;}and{\;}40^{\circ}C$, respectively, thereby indicating that the YAP also has a good detergency at a low temperature. All the results suggest that the YAP produced from the mutant strain KSI has suitable properties for use in laundry detergents.rgents.

  • PDF

Optimization of C/N ratio for production of pullulan

  • 서형필;김현숙;김미령;김성구;이진우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.259-262
    • /
    • 2000
  • The production of pullulan by Aureobasidium pullulans HP-2001 was investigated under various ratios of glucose as carbon source and yeast extract as the nitrogen source, Highest conversion rate (productivity) of glucose to pullulan was 40.0% when concentrations of glucose and yeast extract were 5% and 0.15%, respectively. Maximal production of pullulan was 29.3g/1 when the concentration of glucose was 8%(w/v) and that of yeast extract was 40:1. On basis of the result that production of pullulan was found in a medium which concentration of glucose as carbon source was up to 20%(w/v), Aureobasidium pullulans HP-2001 seemed to overcome the catabolite repression. Conversion rate of pullulan from 20%(w/v) of glucose was 11.1%.

  • PDF

배양조건이 Micrococcus sp.의 생육 및 casein 분해에 미치는 영향 : (I) 배지조성에 관한 연구 (Effects of cultural conditions on growth of Micrococcus sp. and casein hydrolysis : (I) Studies on compositions of media)

  • 이시경;주현규;백운화
    • Applied Biological Chemistry
    • /
    • 제34권4호
    • /
    • pp.327-333
    • /
    • 1991
  • Cheddar치즈의 숙성기간을 단축시키고 flavor를 증진시킬 목적으로 단백분해력이 있는 Micrococcus sp. LL3를 Cheddar 치즈에 첨가하기 위하여 본 균의 최적배양을 위한 배지조성을 검토하였다. 탄소원으로는 glucose, mannose, fructose 등의 단당류가 양호하였으며, arabinose, xylose는 균의 성장을 심하게 저해하였다. 본 균주에서는 탄소원의 첨가에 의한 catabolite repression은 나타나지 않았다. 또한 질소원으로는 yeast extract 0.2%의 첨가가 균의 성장에 좋았으며, 무기 질소원 첨가시는 균의 성장이 감소하였다. 특히 urea를 첨가시 균의 성장에 심한 저해효과가 있었다. 본 균주는 NaCl 9%첨가시 까지도 균의 생육이 가능했으며, 특히 1%첨가시에는 균체생육 및 단백분해 효과가 다소 증가하였다. 무기염의 경우 $MgSO_4\;0.05%$, 아미노산은 glutamic acid 0.2%첨가시 효과가 좋았다. 그러나 비타민은 $0.1\;{\mu}g/ml$ 수준으로 첨가시에 균의 성장 및 단백분해 효과에 영향을 미치지 않았다.

  • PDF

극한환경에서 분리한 고온성 Bacillus sp. TR-25에 위한 내열성 $\alpha$-amylase의 생산 (Thermostable $\alpha$-Amylase Production by Thermophilic Bacillus sp. TR-25 lsolated from Extreme Enviroment)

  • 노석범;손홍주;이종근
    • 생명과학회지
    • /
    • 제7권1호
    • /
    • pp.30-38
    • /
    • 1997
  • 내열성 {\alpha}$-amulase를 생산하는 미생물을 분리하기 위하여 각종 분리원으로 시료를 채취하여 55$^{\circ}C$ 이상에서 생육하고 가장 내열성 {\alpha}$-amulase 생산능이 우수한 균주를 분리, 동정한 결과 thermophilic Bacilus 속으로 추정되었다. 균체생육과 효소생산의 최적온도는 60~$65^{\circ}C$였고, 초발 pH8.0에서 가장 높은 효소생산능을 보였다. {\alpha}$-amulase 생산에 가장 양호한 탄소원은 soluble starch, dextrin, prtato starch, corn starch 등의 다당류이었으며 glucose, fructose 등의 단당류에서는 효소생산이 미약하거나 억제를 받았다. {\alpha}$-amulase 생산에 가장 중요한 질소원은 yeast extract이었따. 0.1% $CaCl_2{\cdot}2H_2O$, 0.001%의 Tween-80의 첨가는 {\alpha}$-amulase 생산성을 증가시켰다. 본 공사균이 생산한 조효소액의 특성을 검토해 본 결과, 8$0^{\circ}C$에서 최적 효소활성을 보였으며, 10$0^{\circ}C$에서도 23%의 잔존활성을 나타내었다. 최적 pH는 5.0이었다. $Ca^{2+}$은 효소활성 증진에는 영향을 미치지 않았다. 공시균으로부터 분리한 genomic DNA를 중온성 BAcillus subtilis KCTC 1024에 형질전환시킨 결과, transformant는 wild type에 비하여 약 2배의 효소활성이 증가되었다.

  • PDF