• Title/Summary/Keyword: nitrate

Search Result 3,279, Processing Time 0.03 seconds

Distribution of Soil Components and Their Relationships in Different Soil Depths in Australian Upland Soil (Narayen Exp. sta., CSIRO) (호주(濠洲) Narayen 시험장(試驗場)(CSIRO) 포장토양(圃場土壤)의 심도별(深度度) 성분(成分) 분포(分布))

  • Ahn, Yoon Soo;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.2
    • /
    • pp.168-174
    • /
    • 1992
  • This study was carried out to find out the distribution of soil components and their relationships in layer of soil profiles under upland condition. Concentrations of nitrate, chloride, and that sort of thing in soil profiles were tested in a field covering $235m^2$ by core sampling down to 150cm depth. Total nitrogen contents in soil profiles progressively decreased in lower depths down to 150cm. Nitrate concentrations in deeper layers than 110cm, which revealed a similar distribution pattern with total nitrogen down to 110cm, increased with the depth lowering to 150cm, indicationg that nitrate has leached to deep layer. Natural abundance of $^{15}N$ in total nitrogen and nitrate in all the soil profiles showed higher values compared with the other general cultivated soils and trended to get higher in deeper layers. The horizontal variation of $^{15}N$ distribution in the field surveyed was not significant. Chloride concentrations and EC values in soil profiles increased with depth where nitrate was accmulated, and showed a highly positive correlation between them.

  • PDF

Nitrate Removal Rate in Cattail Wetland Cells of a Pond-Wetland System for Stream Water Treatment (하천수정화 연못-습지 시스템 부들 습지셀의 초기 질산성질소 제거)

  • Yang, Hongmo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.24-29
    • /
    • 2002
  • Nitrate removal rate in three cattail wetland cells was investigated. They were a part of a pond-wetland system for stream water treatment demonstration. The system was composed of two ponds and six wetland cells. The acreage of each cell was approximately $150m^2$. The earth works for the system were finished from April 2000 to May 2000 and cattails were planted in the three cells in June 2000. Waters of Sinyang Stream flowing into Kohung Estuarine Lake were pumped into a primary pond, whose effluent was discharged into a secondary pond. The reservoir was formed by a tidal marsh reclamation project and located in southern coastal area of Korean Peninsula. Effluents from the secondary pond were funneled into the three cells. Volumes and water quality of inflow and outflow were analyzed from July 2000 through January 2001. Inflow and outflow averaged $20.2m^3/day$ and $19.8m^3/day$, respectively. Hydraulic retention time was about 1.6 days. Average influent and effluent nitrate concentration was $1.98mg/{\ell}$, $1.38mg/{\ell}$, respectively. Nitrate removal rate averaged $82.6mg\;m^{-2}\;day^{-1}$. Seasonal changes of nitrate retention rates were closely related to those of wetland cell temperatures. The average nitrate removal rate in the cells was a little lower, compared with that of $125.0mg\;m^{-2}\;day^{-1}$ for the wetlands operating in North America. This could be attributed to the initial stage of the cells and inclusion of three cold months into the seven-month study period. Root rhizosphere in wetland soils and litter-soil layers on cell bottoms could not developed. Increase of standing density of cattails within a few years will establish both root zones suitable for the nitrification of ammonia to nitrates and substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increase of the nitrate retention rate.

Continuous-Flow Analysis for Determination of Nitrate Using Hydrazine-Copper Method in Plan (Hydrazine-Copper 방법을 이용한 연속흐름제어장치를 통한 식물체의 nitrate 분석)

  • Park, Yang-Ho;Park, So-Hyeon;Lee, Ju-Young;Jang, Byoung-Choon;Lee, Ki-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.4
    • /
    • pp.204-208
    • /
    • 2006
  • This study is to describe continuous-flow analysis (CFA) for the determination of nitrate using hydrazine-copper in plant material and to test precision of this method compared with that of methods, which are RQflex method and salicylic acid method. Samples were leaves of watermelon, cucumber, melon and tomato. Nitrate values measured by the RQflex method were greater than those measured by CFA or salicylic acid method. The correlation of nitrate values between those measured by CFA and salicylic acid method was $R^2=0.9671$, and those measured by CFA between those measured by RQflex method was $R^2=0.9739$. Recovery rate of nitrate added to tissue extract by CFA method was $99.7{\pm}0.25%$.

Effects of Rumen Protozoa of Brahman Heifers and Nitrate on Fermentation and In vitro Methane Production

  • Nguyen, S.H.;Li, L.;Hegarty, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.6
    • /
    • pp.807-813
    • /
    • 2016
  • Two experiments were conducted assessing the effects of presence or absence of rumen protozoa and dietary nitrate addition on rumen fermentation characteristics and in vitro methane production in Brahman heifers. The first experiment assessed changes in rumen fermentation pattern and in vitro methane production post-refaunation and the second experiment investigated whether addition of nitrate to the incubation would give rise to methane mitigation additional to that contributed by defaunation. Ten Brahman heifers were progressively adapted to a diet containing 4.5% coconut oil distillate for 18 d and then all heifers were defaunated using sodium 1-(2-sulfonatooxyethoxy) dodecane (Empicol). After 15 d, the heifers were given a second dose of Empicol. Fifteen days after the second dosing, all heifers were allocated to defaunated or refaunated groups by stratified randomisation, and the experiment commenced (d 0). On d 0, an oral dose of rumen fluid collected from unrelated faunated cattle was used to inoculate 5 heifers and form a refaunated group so that the effects of re-establishment of protozoa on fermentation characteristics could be investigated. Samples of rumen fluid collected from each animal using oesophageal intubation before feeding on d 0, 7, 14, and 21 were incubated for in vitro methane production. On d 35, 2% nitrate (as $NaNO_3$) was included in in vitro incubations to test for additivity of nitrate and absence of protozoa effects on fermentation and methane production. It was concluded that increasing protozoal numbers were associated with increased methane production in refaunated heifers 7, 14, and 21 d after refaunation. Methane production rate was significantly higher from refaunated heifers than from defaunated heifers 35 d after refaunation. Concentration and proportions of major volatile fatty acids, however, were not affected by protozoal treatments. There is scope for further reducing methane output through combining defaunation and dietary nitrate as the addition of nitrate in the defaunated heifers resulted in 86% reduction in methane production in vitro.

High Cell Density Culture of Micro-algal Dunaliella bardawil (미세조류 Dunaliella bardawil의 고농도 세포배양)

  • 정욱진;왕만식;최승인;정병철;김주곤
    • KSBB Journal
    • /
    • v.14 no.2
    • /
    • pp.160-166
    • /
    • 1999
  • High cell density cultivation of microalga Dunaliella bardawil using nitrogen fed-batch cultures was studied in batch flask. Optimum environmental conditions include concentrated nutrients except NaCl and carbon sources, carbon sources, pH, light, agitation, nitrate and phosphate ions. Cell growth, consumption rates of nitrate and phosphate ions were monitored. Optimal conditions for higher cell density were found to be(in the range tested): 5 times concentrated media(1 times-10 times concentrated media) pH 8.0 (7.0-9.0) white light(blue and red light) 15mM of nitrate (0.94-15mM) 250mM $NaHCO_3$ and $CO_2$ gas. However, the addition of phosphate ions did not enhance the algal maximum cell density and specific growth rate. Nitrate was found to be effective for the cell growth. The maximum cell density of fed-batch culture using nitrate ions in $8.955{\times}106$cells/ml after 189hr incubation.

  • PDF

Effect of Total Nitrogen on the Nitrate Content of Crisp Lettuce Leaf in Deep Flow Culture (결구상추의 수경재배시 배양액내 전질소량 조절이 엽중 nitrate 함량에 미치는 효과)

  • 김혜진;김영식
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.216-221
    • /
    • 1999
  • To reduce leaf nitrate content, lettuce plants(Lactuca sativa var. capitata) were grown in deep flow culture. Nitrogen concentrations were controlled to 1 (6.Sme/$\ell$), 3/4 (4.9me/$\ell$), 2/4 (3.3me/$\ell$), and 1/4 strength(1.6me/$\ell$) of Yamaziki's nutrient solution from 7 days before harvest. The pH of nutrient solution was maintained at high level between 7.2 and 8.4. The values of pH and EC were increased with the nitrogen concentration in the nutrient solution. The nitrate contents were lowest at the treatment of 1/4 strength, but not significantly different among other treatments. The nitrate content was lower in outer leaves than in head leaves. The weight and diameter of head and shoot weight were lowest at the treatment of 1/4 strength.

  • PDF

Evaluation of nanoscale zero valent iron filled column for nitrate reduction (영가철 나노입자가 충진된 컬럼을 이용한 질산성 질소 환원 성능 평가)

  • Hong, Youngpyoe;Seo, Younggyo;Kim, Hyowon;Hwang, Yuhoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.3
    • /
    • pp.243-251
    • /
    • 2018
  • In this study, we compared the MZVI (Microscale Zero-Valent Iron) and NZVI (Nanoscale Zero-Valent Iron) for reactivity and mobility in a column to reduce nitrate, which is a major pollutant in Korea, and investigated the effect of operational parameters on the NZVI filled column. For the comparison of MZVI and NZVI, samples were collected for 990 minutes using fractionator in the similar operation conditions (MZVI 10g, NZVI 2g). The nitrate reduction efficiency of NZVI was about 5 times higher than that of MZVI, which was about 7.45% and 38.75% when using MZVI and NZVI, respectively. In the mobility experiment, the MZVI descended due to gravity while NZVI moved up with water flow due to its small size. Furthermore, the optimum condition of NZVI filled column was determined by changing the flow rate and pH. The amount of Fe ions was increased as the pH of the nitrate solution was lowered, and the nitrate removal rate was similar due to the higher yield of hydroxyl groups. The removal rate of nitrate nitrogen was stable while flow rate was increased from 0.5 mL/min to 2.0 mL/min (empty bed contact time: 2.26 min to 0.57 min). NZVI has a high reduction rate of nitrate, but it also has a high mobility, so both of reactivity and mobility need to be considered when NZVI is applied for drinking water treatment.

Sensing Nitrate and Potassium Ions in Soil Extracts Using Ion-Selective Electrodes (이온선택성 전극을 이용한 토양추출물의 질산 및 칼륨이온 측정)

  • Kim, H.J.;Sudduth Kenneth A.;Hummel John W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.463-473
    • /
    • 2006
  • Automated sensing of soil macronutrients would allow more efficient mapping of soil nutrient spatial variability for variable-rate nutrient management. The capabilities of ion-selective electrodes for sensing macronutrients in soil extracts can be affected by the presence of other ions in the soil itself as well as by high concentrations of ions in soil extractants. Adoption of automated, on-the-go sensing of soil nutrients would be enhanced if a single extracting solution could be used for the concurrent extraction of multiple soil macronutrients. This paper reports on the ability of the Kelowna extractant to extract macronutrients (N, P, and K) from US Corn Belt soils and whether previously developed PVC-based nitrate and potassium ion-selective electrodes could determine the nitrate and potassium concentrations in soil extracts obtained using the Kelowna extractant. The extraction efficiencies of nitrate-N and phosphorus obtained with the Kelowna solution for seven US Corn Belt soils were comparable to those obtained with IM KCI and Mehlich III solutions when measured with automated ion and ICP analyzers, respectively. However, the potassium levels extracted with the Kelowna extractant were, on average, 42% less than those obtained with the Mehlich III solution. Nevertheless, it was expected that Kelowna could extract proportional amounts of potassium ion due to a strong linear relationship ($r^2$ = 0.96). Use of the PVC-based nitrate and potassium ion-selective electrodes proved to be feasible in measuring nitrate-N and potassium ions in Kelowna - soil extracts with almost 1 : 1 relationships and high coefficients of determination ($r^2$ > 0.9) between the levels of nitrate-N and potassium obtained with the ion-selective electrodes and standard analytical instruments.

An Automated Water Nitrate Monitoring System based on Ion-Selective Electrodes

  • Cho, Woo Jae;Kim, Dong-Wook;Jung, Dae Hyun;Cho, Sang Sun;Kim, Hak-Jin
    • Journal of Biosystems Engineering
    • /
    • v.41 no.2
    • /
    • pp.75-84
    • /
    • 2016
  • Purpose: In-situ water quality monitoring based on ion-selective electrodes (ISEs) is a promising technique because ISEs can be used directly in the medium to be tested, have a compact size, and are inexpensive. However, signal drift can be a major concern with on-line management systems because continuous immersion of the ISEs in water causes electrode degradation, affecting the stability, repeatability, and selectivity over time. In this study, a computer-based nitrate monitoring system including automatic electrode rinsing and calibration was developed to measure the nitrate concentration in water samples in real-time. Methods: The capabilities of two different types of poly(vinyl chloride) membrane-based ISEs, an electrode with a liquid filling and a carbon paste-based solid state electrode, were used in the monitoring system and evaluated on their sensitivities, selectivities, and durabilities. A feasibility test for the continuous detection of nitrate ions in water using the developed system was conducted using water samples obtained from various water sources. Results: Both prepared ISEs were capable of detecting low concentrations of nitrate in solution, i.e., 0.7 mg/L $NO_3-N$. Furthermore, the electrodes have the same order of selectivity for nitrate: $NO_3{^-}{\gg}HCO_3{^-}$ > $Cl^-$ > $H_2PO_4{^-}$ > $SO{_4}^{2-}$, and maintain their sensitivity by > 40 mV/decade over a period of 90 days. Conclusions: The use of an automated ISE-based nitrate measurement system that includes automatic electrode rinsing and two-point normalization proved to be feasible in measuring $NO_3-N$ in water samples obtained from different water sources. A one-to-one relationship between the levels of $NO_3-N$ measured with the ISEs and standard analytical instruments was obtained.

Separation Technologies for the Removal of Nitrate-Nitrogen from Aqueous Solution (수용액으로부터 질산성질소 제거를 위한 기술)

  • Seo, Yang Gon;Jung, Se Yeong
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.1-14
    • /
    • 2017
  • At high nitrate concentrations, water must be treated to meet regulated concentrations because it results in threat to human health and eutrophication of natural water. However, it is almost impossible to remove nitrate by conventional water treatment methods such as coagulation, filtration and precipitation, due to its high water solubility. Therefore, other technologies including adsorption, ion exchange, reverse osmosis, denitrification, and electrodialysis are required to effectively remove nitrate. Each of these technologies has their own strengths and drawbacks and their feasibility is weighted against factors such as cost, water quality improvement, residuals handling, and pre-treatment requirements. An adsorption technique is the most popular and common process because of its cost effectiveness, ease of operation, and simplicity of design. Surface modifications of adsorbents have been enhanced their adsorption of nitrate. The nitrate-selective membrane process of electrodialysis reversal and reverse osmosis have proven over time and at many locations to be highly effective in removing nitrate contaminating problems in aqueous solutions. Both electrodiaysis and reverse osmosis methods generate highly concentrated wastes and need careful consideration with respect to disposal.